Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Наука. Техника. Медицина
   Домашний очаг
      Шаталов В.Ф.. Эксперимент продолжается -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  -
присутствовал при решении задач, а потом записывал их в свои тетради. Почему же отсутствовавший должен попадать в какие-то иные условия? Здесь не случайно выделено слово любому. Это снова все тот же заряд психологического воздействия: решение даже очень сложной задачи после записи всех действий в тетрадь становится понятным каждому, и поэтому консультантом может стать любой ученик. Спокойно предложить вчерашнему отстающему оказать помощь в решении задачи традиционно сильному - это значит создать основу для уважения вторым первого, помочь слабому наполниться чувством достоинства и самоуважения. Как видим, это весьма своеобразная форма помощи. "Забота об отстающих,- как писал еще в 1918 г. А. В. Луначарский,- это первая забота демократической школы". А если учитель знает о случайно возникшей размолвке между двумя учащимися класса? Как это часто бывает, каждый уже и рад бы помириться, да гордыня не позволяет или решительности недостает. Тут-то и поможет деловой контакт на основе одной только задачи, и никаких проблем. Десантный метод Начало учебного года. Решение задач у доски проводится как обычно, без записи решения в тетради. Но в самом начале работы в любом классе, будь он четвертым или восьмым, всегда найдутся 10-15 человек, которые не в состоянии самостоятельно воспроизвести в тетради решение только что разобранной задачи. Это реально, и это не должно отпугивать учителей. Внимательно наблюдая за ребятами во время работы, опытный учитель может без труда обнаружить хотя бы несколько человек из числа тех, кого не осенило решение задачи. Всякое ожидание в этом случае бесполезно! Проверив первую тетрадь, учитель сразу же направляет ученика, правильно решившего задачу, к столику одного из тех, кто старательно вертит между пальцев шариковую ручку и, не поднимая глаз, делает вид, что работает в поте лица. Наивные детские уловки... От помощи он никогда не отказывается, и вот в первой трудной точке началась деловая беседа. Через несколько секунд - в другой, затем - в третьей. Дело пошло. Через минуту-другую учитель спокойно и предельно доброжелательно обращается к классу: - Кому еще помочь? Сначала робко, застенчиво поднимается первая рука, за ней -другая, но это еще не все - кто-то внимательно изучает учителя: нет ли в его голосе насмешки, высокомерного снисхождения... Если ничего этого нет, то завтра исчезнут все сомнения: на зов доброго человеческого сердца не откликнуться невозможно. Так ласточки ставят на крыло своих птенцов. Кружат рядом с гнездом, подбадривают, зовут в первый полет, а если птенец с ленцой, то и подтолкнут его из гнезда - лети! Еще и еще раз: ученик должен учиться победно. Совершенно безосновательны сомнения по поводу того, что ребята, не имея педагогических навыков, будут вести работу с товарищами с грубыми перегибами. Случается, не без того, но не грубые... Вот там, в дальнем углу класса, Володя Чумак, низко склонившись над столиком, о чем-то шепчется с Витей Малишевским. - Что это вы, ребята, подзадержались? Все уже закончили. - Так он же,- не выдерживает Малишевский,- ничего не рассказывает. Только жужжит над ухом как шмель: думай да думай. А если оно не думается?! Это у Малишевского-то не думается! Иной раз такое ввернет - не сообразишь сразу, что и ответить. Но сейчас налицо критика снизу. К ней нужно прислушаться, но ждать - нет времени. Две минуты Малишевскому для разъяснения задачи, а Чумаку - постоять рядом. Пусть изучает азбуку работы учителя. Педагогические микроуниверситеты. Педагогический десант - промежуточный методический прием. Уже к концу первого полугодия в такой помощи нуждаются только отдельные ребята, но каждый раз, когда нужно переходить к новому классу упражнений, эта форма работы возвращается и срабатывает быстро и четко. Цепочка же действует постоянно, на протяжении всех лет обучения в школе. Задание домой Обычный класс. Конец урока. Учитель задает детям 2 задачи для самостоятельного решения дома. Современная педагогика ориентирует каждого учителя на домашнее задание, которое бы соответствовало возможностям среднего ученика. Остановим еще раз наше внимание на этом давно уже примелькавшемся термине. На железнодорожном транспорте существует понятие "средняя скорость", в физике можно говорить о средней плотности, но что такое средний ученик? Если разделить класс на 3 неравные части, то большинство ребят окажется в умеренном поясе. С некоторой долей натяжки можно считать, что именно на них и рассчитано домашнее задание. Но, кроме них, значительная часть ребят расположится в полярных областях. Одни из них - "сильные" (понимай - "умные"), другие - "слабые". И никому нет дела, в чем истоки этой слабости - от случайного срыва или от многолетней запущенности, от семейных неурядиц или педагогической черствости. Формула домашних заданий ставит этих ребят в непреодолимо сложное положение: задание рассчитано на "среднего", а они "слабые". Как быть? Посидит, посидит такой ученик (если еще станет сидеть) над заведомо непосильной задачей и пойдет за помощью к родителям, к товарищам, а то и еще дальше - на прямой обман. И где же это подростку набраться столько мужества, чтобы ежедневно на каждом уроке честно докладывать учителю, что для решения задачи по математике не хватило способностей, для решения задачи по физике - предшествующих знаний, а для решения задачи по химии - элементарного терпения? Но то - "слабые". Что с них взять? А ведь в еще более грозном положении оказывается группа ребят, находящихся в другой полярной области,- "лучшие"! Ежедневно по всем учебным предметам они работают с "недогрузом", все более и более убеждаясь и утверждаясь в своей "всесилыюстн" и "привилегированности". Кто возьмет на себя труд подсчитать издержки от такой, мягко говоря, педагогики в масштабе страны? Можно, конечно, попытаться давать разным ученикам разные домашние задания, но в условиях работы современной школы это связано с огромными трудностями, и потому на такие издержки личного времени идут только очень и очень немногие учителя. Иногда. Попробуем теперь сочленить два классических принципа современной педагогики - принцип посильности и принцип обучения на высоком уровне трудности. Совместимы ли они? С одной стороны, все домашние задания должны быть посильными, а с другой - находиться на высоком уровне трудности применительно к каждому отдельно взятому ученику. Соотнесем эти требования с домашними заданиями для "среднего" ученика, и нам тотчас же станет понятным, что в этом узком месте и ребятам и учителям уготован капкан: налицо совершенно очевидное противоречие! Хотим мы того или не хотим, но именно в обстановке несовместимости основополагающих требований дидактики с реальностью вчерашняя школа работала на самоуничтожение. Здесь нет ошибки: именно вчерашняя, так как, несмотря на кажущуюся взаимоисклкнаемость исходных требований, проблема имеет совершенно строгое решение. Вспомним сначала два урока в средней школе No 3, где директорствовал Сергей Сергеевич Шатунов. После объяснения, нового материала ребятам были даны образцы основных упражнений, и они получили право решать любую задачу из раздела "Бесконечные прогрессии". Итог, казалось бы, фанфарный: несколько человек решили все 27 упражнений из этого раздела. Может быть, именно так и следует поступать: предоставить ребятам право решать ежедневно столько, сколько они сами того пожелают? Капризная это штука - желание, а будучи помноженной на неизбежные сложности, сплошь и рядом подстерегающие искателей приключений, становится еще и опасной. Напомним: естественные процессы развиваются по линиям наименьшего сопротивления, а неизбежный дефицит рабочего времени и стремление быть "не хуже других" медленно, но верно уведут большую часть учащихся от работы по нарастающей сложности к более доступной или более привычной. Третья четверть в экспериментальном IV классе 13-й донецкой школы. Ребята закончили программу V класса, и им предоставлено право решать примеры на все действия с обыкновенными, десятичными и периодическими дробями из конкурсных сборников для поступающих в высшие учебные заведения. Правда, такими книгами каждый учитель обеспечить всех своих учащихся не может, но большой беды в том нет: с помощью различных множительных машин, имеющихся в распоряжении различного рода кооперативов, можно без труда снять копии с нужных страниц, и ребята их вклеивают в свои альбомы. Увлечение примерами - на грани ажиотажа. Малышам в диковинку выходить на правильные ответы и примеры головоломной сложности, устрашающие одним только внешним видом по сравнению с теми, которые им приходилось решать из учебников III-IV классов. Они вдруг начинают ощущать себя в каком-то новом качестве. И вот к очередному уроку один ученик решил сразу 5 таких примеров, другой 6, а Иришка Шепотько - 10! В общей сложности более 100 арифметических действий! Хорошо? Хуже некуда! Малышке кажется, что она чуть ли не подвиг совершила, а на деле - ушла от сложностей, переключилась на механические операции и пошла по линии наименьшего сопротивления. Еще и еще раз: естественные процессы развиваются по линиям наименьшего сопротивления. Точные пауки - это тысячи взаимопересекающихся направлений. Точки их пересечения должны быть надежно соединены, и надежность этих соединений целиком и полностью зависит от частоты, постоянства и строгости контроля. В противном случае мы получим прохудившуюся сеть отрывочных знаний с зияющими в ней прорехами. Не напоминает ли это порочную методику контрольных работ, описанную ранее? Взрослые, если внимательно присмотреться, во многом похожи на детей, а дети - это взрослые в миниатюре. На перекрестках логических взаимосвязей А теперь вернемся к листу учета решенных задач. Предположим, что для решения в классе учитель избрал задачу No 49 из числа задач для повторения. Это не первая задача, решаемая в классе из раздела "Давление", так как ранее были разобраны задачи из упражнения 18 на странице 66. Задача No 49 не самая простая и не самая сложная в разделе. Она представляет собой нечто похожее на островок, от которого можно отправиться в любую сторону. Именно такие задачи и должны в основном решаться на уроках, когда учащиеся еще только начинают делать первые шаги в новых разделах. Те из ребят, которые чувствуют в себе силы и уверенность, поплывут на глубину, другие -вдоль берега, а еще не окрепшие - к берегу, на мелководье. Но плыть-то все разно нужно! После того как задача решена, записана в тетрадь и кем-либо проверена, закрашиваются два квадратика - один в ведомости, а другой - в плашке. Плашка - уменьшенная копия индивидуальной ведомости. Справа и слева от этого квадратика пустующие клеточки - плыви в любую сторону. Слева - более легкие задачи, справа - более трудные. Здесь у сомневающихся могут возникнуть два вопроса. 1. Исключены ли случаи, когда ученики закрашивают свои квадратики, не решив задачу? Иными словами, нет ли здесь лазеек к нечестности? 2. Каким образом осуществляется контроль за строгостью ведения учета решенных задач в плашках и в ведомостях? Начать, видимо, следует с того, что открытая форма учета предоставляет новые совершенно необычные возможности для подключения родителей к учебной деятельности ребят. Каждая решенная в тетради задача фиксируется цветным кружочком вокруг номера, записанного в начале решения. Кружок - сигнал для родителей. Новый рабочий день - новый цвет, и родителям видно, какие задачи были решены вчера, какие накануне, какие сегодня. Для работы в течение года вполне достаточно 3- 4 цветов. Тетрадь становится даже внешне очень привлекательной. Право обводить номера кружками предоставлено только учителю и ученикам-консультантам. Но родители - это только вспомогательная и никак не решающая "составляющая" учебного процесса. Главной частью ответа на оба вопроса является новая форма контроля - релейные работы. Для рассмотрения этой методической структуры представим сначала читателям полный список задач, которые должны быть решены учеником IV класса по второй половине учебника V класса. Иными словами, выпишем все задачи второй плашки по курсу V класса. Вот они. У каждого учителя математики после знакомства с этими задачами непременно создастся мнение о сложности выбранных задач. И это действительно так: из 600 задач второй половины курса V класса отобраны самые сложные. Отсеялись часто повторяющиеся примеры, включенные в учебник для отработки навыков (навыки отрабатываются иными способами), отсеялись упражнения, так сказать, бесфункциональные. Последняя из 5 плашек IV класса - особая: не менее половины упражнений из тех, что на ней есть, решаются в классе. И это понятно: сложность первых 4 плашек несравненно меньшая, да и упражнений на каждой из них в полтора раза меньше. На последней - 275, следовательно, 130-140 упражнений выполняются в классе и столько же самостоятельно, дома. Но вот вся плашка закрашена: упражнения решены, и ученик получает релейную работу. Это нечто среднее между самостоятельной работой и контрольной. В пятую релейную работу включены 70 задач из числа 275, содержащихся на пятой плашке. 70 - самых трудных. Значит, это самые трудные из самых трудных. Для доказательства приводим содержание этой релейной работы. Она вручается ученику на картонке белого цвета. Первая была на голубой, вторая - на красной. У каждой релейной работы свой цвет, и детям хорошо известно значение каждого цвета. Белая - самая престижная, ибо она последняя в IV классе. На подготовку к релейной работе ученику выделяется 1-2 дня, но если ему потребуется еще один день, то он всегда его получает. В эти дни ученик повторяет решение уже решенных задач. Уже один только факт существования релейных работ, во-первых, приучает детей к аккуратности ведения тетрадей, ибо по каракулям подготовиться к сложной релейной работе почти невозможно. Во-вторых, нацеливает аппарат памяти на длительное запоминание решения, включается система ДВХ (долговременное хранилище памяти). В-третьих, полностью изживаются переписывания и подсказки, не говоря уже о закрашивании клеточек при отсутствии решения. Все это неизбежно проявится во время подготовки к выполнению релейной работы - 70 самых трудных задач проработать до состояния полной готовности без предварительного решения абсолютно невозможно. При выполнении первой релейной работы у некоторых учеников случаются срывы - они еще не до конца понимают строгость релейной работы, но в дальнейшем все образуется на многие годы. Идеальным же вариантом является, конечно же, следующий. Марина Южелевская закончила очередную плашку, и ей вручается картонка с релейной работой. - Готовься на среду. Послезавтра. - А сегодня можно? Вдумаемся: ученик готов к выполнению работы немедленно! Сейчас! Ему не нужно времени на подготовку. Он решал задачи и держал под прицелом грядущую релейную работу. Часто ли такое бывает? У лучших ребят очень часто. У всех остальных еще не случалось ни разу. Что же будет делать ученик? Прежде всего релейная работа проводится или на уроке, или после уроков. Если после уроков, то учитель старается собрать в один день сразу несколько учащихся - потери времени в этом случае значительно меньше. Если же на уроке, то ученик обычно садится за первый столик и работает самостоятельно, не обращая внимания на класс, занятый своим делом. Процесс же предельно прост. Учитель выписывает на чистом листе 10 номеров из релейной работы, и ученик приступает к решению этих задач. Номера выбираются рассеянным способом: более или менее равномерно со всей плоскости релейной работы. Пусть, к примеру, это будут следующие задачи. Приведем их полностью. В этом есть необходимость. С одной стороны, учебник математики V класса смогут достать не вес, а с другой - книги живут обычно значительно дольше, чем учебники, и что скажут читателю 10 номеров, не подкрепленных конкретным содержанием задач? No 623. "Я задумал число х, умножил его на 2, прибавил к произведению 50, сумму умножил на 5, из произведения вычел 200 и разность разделил на 10. В результате получил число 30. Какое число я задумал?" No 788. "С железнодорожной станции в 12 ч вышел скорый поезд со скоростью 70 км/ч. На 3 ч раньше с этой же станции был отправлен в том же направлении товарный поезд. В котором часу скорый поезд догонит товарный, если скорость товарного составляет 4/7 скорости скорого поезда?" No 1010. "За 83/4 м сукна и 71/2 м сатина заплатили 225 р. Сколько стоит 1 м сатина и 1 м сукна, если за сукно заплатили в 14 раз больше, чем за сатин?" No 1108. (1,75*4/7 - 1,75:11/8)*4,5 - 0,5 = No 1157. "Расстояние между городами А и В 450 км. Из Л в В вышла грузовая машина. Два часа спустя навстречу ей из В вышла легковая машина. Скорость грузовой машины 60 км/ч, а скорость легковой в 11/2 раза больше. Постройте графики движения обеих машин. Через сколько часов после выхода легковая машина встретит грузовую?" No 1203а (7 - 14/23*35/6 + 3/19*31/6) : 2/3 - 2/3 = No 1161. "На ремонт физкультурного зала было израсходовано 44 кг краски, что составляет 20% всей краски, отпущенной колхозом на ремонт школы. Сколько килограммов краски купил колхоз если школе было отпущено 12,5% купленной краски?" No 1128. "В двух альбомах наклеено 750 марок, причем в первом альбоме 3/5 имевшихся там марок составляли иностранные марки. Во втором альбоме иностранные марки составляли 9/10 имевшихся там марок. Сколько марок было наклеено в каждом альбоме, если известно, что иностранных марок в этих альбомах было поровну?" No 10481. "В одном баке 104 л бензина, а в другом 72 л. Из первого бака каждый час тратили 3 л бензина, а из второго 5 л. Через сколько часов во втором баке останется бензина в 2,5 раза меньше, чем в первом?" No 9381. "В лаборатории стояло 25 столов с ящиками. В одних столах было по 3 ящика, в других по 4 ящика. Сколько было столов с тремя ящиками и сколько столов было с четырьмя ящиками, если общее число ящиков равно 91?" На выполнение этой работы отводится 45 минут, но если ученик немного не укладывается в отведенное время и сам просит дать ему еще поработать, то после уроков ему выделяется дополнительно 15 минут, а при выполнении на уроке ему дают возможность поработать на перемене. Можно предвидеть изумление учителя математики, познакомившегося с текстом работы,- она более чем в 3 раза превосходит по объему и сложности самую сложную контрольную для пятиклассников. А тут - ученики IV класса. Добавим еще и условия выполнения - шум на уроке. Добавим еще и строгость оценивания: 9 упражнений - "отлично", 8 - "хорошо", 7 - "посредственно", 6 - работа не засчитывается, и ученик делает ее повторно. Дополнительный срок - 1 день. Не розыгрыш ли это? Нет, речь идет о реальных фактах, и немного позже читатель узнает о строжайшей обоснованности каждого приведенного здесь положения. Сейчас же еще раз обратим внимание на то, что речь идет не о контрольной работе, а

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору