Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Наука. Техника. Медицина
   Домашний очаг
      Шаталов В.Ф.. Эксперимент продолжается -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  -
едставляет: учащимся предлагается в течение 15 минут дать письменный ответ по новому материалу. Результат: в обычных классах на протяжении всего года 40% учащихся совершенно не готовились к урокам. В экспериментальных же классах в первой четверти таких учеников было зарегистрировано 12%, во второй - 6%, а к концу учебного года - только 2%. Нельзя, конечно, думать, что возрастание трудовой активности учащихся определяется всего только одноместной посадкой - работает в комплексе вся система методических приемов. Но вот очевидный факт: учителя переводят на работу за одноместными столами учеников сразу же, как только предоставляется такая возможность. На вопрос "почему?" отвечают единодушно: "Так легче вести урок". Геометрия - без опорных плакатов Опорные плакаты на уроках геометрии применяются только в исключительных случаях, когда доказательства теорем изобилуют громоздкими математическими выкладками или очень сложными чертежами, требующими обстоятельных повторений с помощью чертежных приборов. К такого рода разделам можно отнести вывод формулы Герона, золотое сечение, чертежи и выкладки при выводе формулы Симпсона, доказательство формулы объема усеченной пирамиды и некоторые другие вопросы. А причина в одном: процесс выполнения чертежей в тетради несравненно более прост, нежели на классной доске. Да и нужна ли эта работа на доске, если ее можно оценить по качеству выполнения на листах бумаги, а устные ответы провести по готовым плакатам или слайдам - большим, красивым, аккуратным, многоцветным? Но, как уже было сказано, плакаты на геометрии - исключение. Во всех остальных случаях они не нужны, и устные ответы ребят можно проводить двумя способами. Рассмотрим их. В традиционных условиях на одном уроке учитель доказывает обычно одну, редко - 2 теоремы. Новая методика изложения материала по геометрии позволяет и даже, более того, настоятельно требует объяснять на уроке от 4 до 8 теорем, а на спаренном уроке - от 8 до 15! В пересчете на традиционные календарные сроки это иной раз соответствует материалу целой учебной четверти. Можно только посочувствовать учителям математики, перед которыми после этого сообщения во всей невероятности встанет сакраментальный вопрос "как?". Странные чертежи Сначала о времени. Для полного понимания процесса читателю необходимо сейчас взять в руки карандаш и, зафиксировав время по секундной стрелке, сделать следующие чертежи: Получилось? Отлично. Расход времени - не более 30 секунд, так как качество исполнения существенного значения не имеет, и о чертежных инструментах, как мы помним, речь не шла. Теперь следующий чертеж (первый слева). Здесь все значительно проще, и более 15 секунд, вероятно, не потребовалось. Наконец, еще два чертежа, и перейдем к существу дела. Сейчас мы рассматриваем тот случай, когда чертежи предельно просты и для их выполнения нужны считанные секунды. Начало урока. Весь класс выполняет письменную работу. По истечении нескольких минут одну за другой ребята начинают сдавать тетради. Двоим из них дается задание подготовить на доске чертежи для доказательства теорем. Этими теоремами, в частности, могут быть те, чертежи к которым только что были выполнены. Работу ребята ведут на тыльных сторонах крыльев доски, и это не является ни помехой, ни подсказкой для сидящих за партами. Закончена письменная работа, все тетради сданы, и два человека, находящиеся у доски, готовы к ответам. Закрывается одно крыло, и к двум частям доски вызываются 3-4 ученика для доказательства следующих теорем. Они готовят чертежи. Первый ученик начинает рассказ. - Признаки равенства прямоугольных треугольников. Всего их 4, мне нужно доказать только 3. Первый признак: если катеты одного треугольника соответственно равны катетам другого треугольника, то такие треугольники равны. Между катетами расположен прямой угол, и этот признак доказывать не нужно, так как он сводится к первому признаку косоугольных треугольников: если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны. Второй признак: если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие треугольники равны. Острые углы другой пары тоже равны, так как в сумме с данными дают по 90°: треугольники равны по второму признаку косоугольных - по стороне и двум прилежащим углам. Третий признак: если катет и прилежащий к нему острый угол одного треугольника соответственно равны катету и прилежащему к нему острому углу другого треугольника, то такие треугольники равны. Этот признак доказывать не нужно, к катету с другого конца прилежит прямой угол, и мы снова имеем дело со вторым признаком равенства косоугольных треугольников. Весь этот рассказ продолжается немногим более одной минуты, и за это время каждый из вновь вызванных к доске ребят успевает сделать чертежи к своим теоремам. Теперь открывается первое крыло, закрывается второе и доказывается новая теорема. - Если прямая не проходит через вершину треугольника и пересекает одну из его сторон, то она пересекает еще и только одну сторону треугольника. На чертеже прямая пересекает сторону АВ, значит, точки А и В расположены в разных полуплоскостях. Если точка С будет расположена в одной полуплоскости с точкой А, как на чертеже, тогда она будет расположена в разных полуплоскостях с точкой В. В этом случае не пересекается сторона АВ, зато пересекается сторона ВС. Если же точка С расположится в одной полуплоскости с точкой В, то она будет находиться в разных полуплоскостях с точкой А. Теперь прямая пересечет сторону АС и не пересечет сторону ВС. А через вершину С, по условию, прямая не проходит. На доказательство этой теоремы не нужно и одной минуты. Одновременно с доказательством второй теоремы еще 2-3 ученика начинают чертить на доске опорные сигналы к новым теоремам. Вполне возможно, что они за одну минуту не успеют выполнить все необходимые чертежи, но им это и не надо: к ответу давно уже готовы их товарищи. Начинается доказательство очередной теоремы - третий признак равенства треугольников. Как видим, у доски могут одновременно находиться до 8 человек! Своими доказательствами они охватывают материал 8 традиционных уроков, а время, затрачиваемое для этого на уроке, укладывается в 10 минут. Итого: 10 минут - письменная работа, 10 минут - устные ответы у доски, 10-15 минут - решение задач, 15-10 минут - объяснение нового материала. Кто-то может спросить: "А при чем здесь опорные сигналы? Чертежи-то ничем не отличаются от чертежей официального учебника". Это смотря как к ним подходить. Чертежи к первым трем теоремам сигнализируют о входящих в доказательство элементах. Сигналом к доказательству второй теоремы служит точка С с расположенным рядом с нею вопросительным знаком. Необычным сигналом к доказательству третьего признака равенства треугольников являются обрывки медиан, выполненные к тому же ярким красным цветом. Такая нестандартность вызывает удивление ребят. Удивить - победить. Это почти по Суворову... Конечно же, мы сейчас не задаемся целью изложить весь курс геометрии в опорных сигналах, но кому не захочется попробовать отойти от привычных шаблонов и изложить материал пусть не такими большими, но хотя бы большими дозами? Кто примет приглашение? Второй вариант. Теоремы несколько более сложные. В этом случае отдельных учащихся вызывают к доске во время письменной работы, и они готовят чертежи заблаговременно. Выполнив их, ребята садятся на свои места и в тетрадях делают все чертежи, кроме тех, которые ими уже сделаны на доске. Остальная часть устного опроса проводится так же, как и в первом варианте. Ответ ученика - на уровень рассказа учителя Самым благоприятным вариантом следует признать тот, при котором кто-либо из вызванных к доске учеников изъявляет готовность доказывать теорему без предварительной подготовки чертежа. Это высшая форма знаний! Такие ответы ребят необходимо всемерно поощрять, прямо отмечая, что рассказывать и одновременно выполнять все необходимые построения может только учитель. Отвечать так - значит вплотную подойти в этой части математической подготовки к профессиональному мастерству педагога, ибо педагогическое красноречие состоит вовсе не в том, чтобы правильно излагать свои мысли, а в том, чтобы, ни на секунду не задумываясь над научной правильностью своего рассказа, заботиться только о том, как нужно говорить, чтобы каждый ученик воспринимал этот рассказ с полным вниманием и интересом. Если среди 8 отвечающих найдется хотя бы один ученик, который будет готов отвечать без подготовки чертежа (а это через 2-3 месяца работы становится явлением обычным), то на уроке не происходит никаких потерь времени: во время ответа первого ученика остальные 7 готовят к ответам свои чертежи. В противном случае образуется пауза продолжительностью в 30-40 секунд. А теперь - задачи! На открытом стенде класса расположены большие листы с названиями: физика, алгебра, геометрия, русский язык. Подойдем к одному из них. Это физика. В левой части листа - список учащихся класса. В правой - 328 клеточек в каждой строке - номера упражнений, соответствующих стабильному учебнику "Физика-6". Всего в учебнике физики 343 задачи. Много это или мало? Заведующий кабинетом физики Донецкого института усовершенствования учителей Н. И. Кучеров произвел любопытные расчеты. Из поурочных планов нескольких учителей физики, работавших в шестых классах, он выписал все задачи, которые были заданы в течение учебного года для самостоятельного решения дома и решены на уроках в классе. Получилось, что даже самые добросовестные ребята могут решить за весь учебный год не более 100 задач. 243 задачи остаются вне поля внимания учителей. Небольшая справка: в теоретическом курсе этого же учебника 103 параграфа. С точки зрения авторов, каждый параграф вполне достаточно подкрепить решением 3 задач. Учителя же вносят свои коррективы и каждую задачу подкрепляют только одной задачей. И это - для самых лучших, самых добросовестных! Первая мысль: "Ах, какие нехорошие учителя!" Поспешно. Непростительно поспешно. Попробуем разобраться, из каких же составляющих складываются эти 100 задач. Учебным планом VI класса на изучение физики отводится 68 уроков. Не менее двух из них "погибает" в предпраздничные дни и в дни окончания учебных четвертей. Остается 66. Далее следуют 8 лабораторных работ, 2 экскурсии и 2 киноурока. Остается 54 урока. Начало изучения физики - чисто теоретическое, и первая задача появляется только на 20-й странице. Иными словами, 6- 7 вводных уроков задачами не подкрепляются. Остается 48 уроков. Еще 10 уроков курса - чисто теоретические. Решение задач на них не предусмотрено. В активе осталось 38 уроков. На каждом из них излагается новый материал, проводится опрос учащихся, демонстрируются опыты и просматриваются диапозитивы. Более чем на одну задачу на таких уроках рассчитывать трудно. Редко - две. Одну-две задачи учитель обычно задает домой. Всего - 3 задачи приходится на каждый урок. 38x3=114 задач. Это потолок. Как видим, теоретические прикидки и расчеты Николая Ивановича приводят к выводу: 114 задач на 365 дней календарного года. Одна задача на 4 дня, до краев наполненных большими и маленькими ребячьими делами, разговорами о чемпионатах мира по футболу, хоккею и шахматам, занятиями в спортивных секциях и музыкальных школах, выяснениями отношений друг с другом по поводу и без всякого повода, обсуждением телефильмов и телепередач... Пожалуй, следует остановиться и понять, на каком месте в сознании шестиклассника оказывается одна-единственная задача, приходящаяся на 4 дня. Если же учесть, что для решения одной задачи из предложенных в учебнике физики требуется в основном 5 (редко - 10 минут), то соотношение между задачами по физике и всем остальным будет 1: 800 не в пользу задач. Вполне понятно, что в этих расчетах изрядная доля шутки, но когда приходится сталкиваться с итоговыми практическими навыками восьмиклассников по физике, становится, право же, совсем не до шуток. А теперь возвратимся к листу открытого учета решенных задач. На уроке физики решена задача. Процесс ее решения продолжается не более 5 минут. В это время учащиеся ничего не пишут. Зато в конце урока им будет выделено 2 минуты для письменного оформления этой задачи в тетрадях. Как видим, выдерживается соотношение 3:1. Значит, каждый ученик уйдет из класса, пропустив эту задачу через свое сознание трижды. Первый раз, когда задачу решали у доски. Второй раз, когда ее решение восстанавливалось в тетради. А третий? Третий раз - во время проверки. Записанное-то в тетрадь решение необходимо проверить. Как? Метод цепочки В нем несколько частных вариантов. Вариант А. Его удобнее всего применять на последнем уроке. Первый ученик решил задачу и тотчас же отдал ее на проверку учителю. Время проверки - не более 10 секунд, и тетрадь возвращается ученику. Вот еще одна поднятая рука: задачу записал второй. Проверит правильность записи решения первый. Третьего - второй и т. д. Это цепочка. Первый же ученик после проверки решения задачи вторым уходит домой, хотя урок еще не закончился. На первых уроках с применением метода цепочки на проверку упражнений лучше всего выделить на 2-3 минуты больше расчетного времени: ребята должны привыкнуть к простой мысли об обязательности самостоятельного оформления решения задачи в тетради. Поняв это, ученик не станет отвлекаться во время решения - себе в убыток. Цепочка работает. Через каждые 8-10 секунд из класса уходит один ученик, и вот уже рассеянным архипелагом в классе остались всего только отдельные ученики. Им оказывается индивидуальная помощь. Крайнее средство - к доске вызывается один из них и снова решает эту же задачу, а через 5 минут и он и все оставшиеся уже бегут к учителю с записанным самостоятельно решением задачи. И пусть это далось им не просто, пусть большую часть работы им помог сделать учитель - пусть! Даже самая дальняя дорога всегда начинается с первого шага. Вот они и сделали свой первый шаг. Некоторые учителя, возможно, попытаются провести аналогию между обстановкой на последних минутах при проверке задач методом цепочки с обстановкой на последних минутах контрольных, когда ребята вот так же, по мере выполнения работ, уходят домой или выходят из класса в коридор еще до звонка. Несхожесть психологических состояний учащихся в этих ситуациях очевидна: в первом случае остающиеся в классе относятся к уходящим с полным безразличием или, хуже того, с завистью, так как уходят-то на каждой контрольной работе одни и те же - лучшие. Кто и когда сможет описать "мильон терзаний" тех, на которых давным-давно махнули рукой и учителя, и родители, и товарищи, да и они сами? Веками, как проклятие, висело над многими и многими поколениями детей чье-то уничтожающее мнение об их так называемой неспособности к восприятию математических дисциплин. Но вот в 1968 г. доктор психологических наук, профессор В. А. Крутецкий заявил: "Абсолютной неспособности к изучению математики, своего рода "математической слепоты" не существует. Каждый нормальный и здоровый в психическом отношении школьник способен при правильном обучении более или менее успешно овладеть школьным курсом математики, приобрести знания и умения в объеме программы средней школы"25. "При правильном". На наш взгляд, речь сейчас как раз об этом. "Более или менее успешно" - отвергнуто! Отвергнуто десятилетиями экспериментальной работы. Только более. Значительно более! Чтобы продолжить наш нелегкий путь к полному пониманию этого утверждения, оценим психологическое состояние ученика, перед которым только что было развернуто решение упражнения и от которого ничего более не требуется, кроме как восстановить на листе бумаги запись этого решения. С весельем и отвагой: я могу! Пусть на первом уроке он еще не до конца постиг существо стоящей перед ним задачи. Пусть даже еще на двух. Но вот однажды один из тех, кто никогда и ни в чем не проявлял своих математических способностей, вдруг (?) в числе первых записал в тетради решение упражнения, и ему дали на проверку тетрадь одного из отличников! Психологическое давление в классе поднимется до красной черты. Кто проверяет?!! Першак!!! Кого??? Назарова!!! В эти минуты нужно просто видеть глаза всех остальных "неспособных". На следующем уроке при решении задачи под их взглядами трещит доска. "Если Першак смог, то чем же я хуже?" И он действительно не хуже. Не хуже не только Першака, но и не хуже самого Назарова. Он просто задутый случайным порывом ветра огонек неразгоревшегося костра. Вариант Б. Идет промежуточный урок, а тетради с записанными упражнениями сыпятся, как из рога изобилия. Неизбежна пробка. Но пробки не будет: первый решивший продолжает проверять вновь и вновь поступающие тетради, а после каждой проверенной к нему для проверки подключается новый помощник, и к концу урока в классе не остается ни одного ученика, который бы не закончил запись решения задачи. - А если все-таки остается? - так и слышится голос самого недоверчивого оппонента. Вариант В. В классе создается одновременно 5 цепочек. Каждая - ручейком столов от классной доски до задней стенки классной комнаты. Этот вариант применяется особенно часто, когда ученики достигли такого уровня подготовки, при котором на доске решается не по одной, а по 2-3 и даже по 4-5 разнородных задач. Особенно если эти задачи повышенной сложности. Проверка их должна проводиться со всей тщательностью, с учетом возможных нестандартных вариантов, которые вполне могут использовать при решении отдельные ученики. Стремление выполнить работу как можно лучше подкрепляется еще и тем, что после проверки выполненных упражнений каждый ученик закрашивает цветным карандашом (обычно голубым) все клеточки в листах открытого учета решенных задач, которые соответствуют выполненным упражнениям. Представьте, читатель, ощущение ученика, против фамилии которого зияет пустой провал, в то время когда вся вертикальная полоса клеточек, стоящих против фамилий его товарищей, закрашена. Это как сквозная рана в сердце. Пропуски уроков не причина для пробелов в знаниях Если ученик отсутствовал в школе, то, возвратившись на уроки, он сразу решены без него. Если он может справиться с ними сам, то это лучший вариант и рассказывать о нем, видимо, не стоит. Иное дело, когда задачи оказываются затруднительными или даже непосильными. Да-да - непосильными! Для того и уроки, чтобы идти все дальше, проникать все глубже - во вчера еще неведомое. Без помощи учителя в этот мир неизвестного войти могут только единицы. Едва только ученик появляется в классе, как учитель обращается с просьбой к любому его товарищу объяснить возвратившемуся, как решается задача. Никаких педагогических нарушений в этом нет: весь класс

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору