Страницы: -
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
19 -
20 -
21 -
22 -
23 -
24 -
25 -
26 -
27 -
28 -
29 -
30 -
31 -
32 -
33 -
34 -
35 -
36 -
37 -
38 -
39 -
40 -
41 -
42 -
43 -
44 -
45 -
46 -
47 -
48 -
49 -
50 -
51 -
52 -
53 -
54 -
55 -
56 -
57 -
58 -
59 -
60 -
61 -
62 -
63 -
64 -
евали сомнения, мне
казалось, что я стал свидетелем какой-то невероятной мистификации.
Возможно, я так бы и не стала писать об этом случае, если бы на
следующий день.., не произошло землетрясение в Иране! Я не берусь
комментировать этот случай. Это дело специалистов. Сама Марина не желает
подвергать себя исследованиям. Всю жизнь прожив в бедности, измученная
болезнями, единственное, чего она хочет, это покоя. Когда я предложил ей
связать ее с экстрасенсами, чтобы они ее вылечили, она сказала:
"Кашпировский и ему подобные - ученики дьявола".
ХАРТМАН
"Зубами дракона" называли в Древнем Китае эти места и перед тем, как
строить дом, обязательно советовались со специальным человеком, чтоб
дом, а главное, ложе для отдыха не дай Бог не оказались над коварным
"зубом". Ибо знали, что Земля испоясана линиями, располагающимися в виде
сетки. По китайскому преданию, линии, где наша планета "всасывает"
космическую энергию, считались "плюсовыми", а где выбрасывает -
"минусовыми". Пересечение их и есть тем гиблым местом, от которого
следует держаться подальше, ведь оно рождает болезни в организме,
нарушает его энергетический баланс. Не случайно древние врачеватели
обращали Немалое внимание на быт больного - где он ест, работает, спит.
Эти аксиомы древних стали чуть ли не сенсацией в современном
цивилизованном мире. Немало исследователей бросились изучать линии,
получившие название "линии Хартмана", устанавливать влияние
геопатогенных зон ("зубов дракона") на здоровье людей. Научные изыскания
только подтвердили древнюю теорию о гиблых местах.
Так, недавно польские ученые, обследовав 1300 жителей Варшавы, пришли
к интересным выводам. В "чистой" зоне между "пучками" сетки спало только
лишь 20 человек, которые оказались абсолютно здоровыми. Почти половина
прошедших проверку спит на пересечении - из них 335 тяжелобольных. А
известный болгарский целитель Иван Йотов обнаружил, что все без
исключения осмотренные онкологические больные спали головой на "зубе
дракона".
Интересно, что животные, в отличие от нас, обладают острой
чувствительностью по отношению к геопатогенным зонам. Так" собака
никогда не ляжет на пересечении линий, подальше от "зуба дракона" будут
держаться свинья, корова, овца, конь. В то же время микробы, паразиты,
совы любят "пересечения", муравьи строят муравейники только на "плюсах"
и "минусах", а пчелы в этих местах лучше медоносят. С большинством
деревьев - наоборот. Так, береза, выросшая на "зубе дракона", растет с
больной, негладкой корой и кривая - словно пытается уклониться от
"гиблого места", хуже тут развиваются и плодоносят некоторые садовые
деревья. Не случайно во многих странах Запада эти знания учитываются в
сельском хозяйстве, при строительстве жилья, животноводческих и
птицеферм.
Как же защититься человеку от "гиблых зон", которые, несомненно,
вредны, потому что нарушают энергетический баланс организма? Способов
тут существует много. Так, вредность "зон" может быть нейтрализована
изобретенным в Болгарии прибором "Магнитотрон" (авторское свидетельство
№ 74632). Автор прибора, представляющего намагнетизированную алюминиевую
фольгу, вмонтированную в обыкновенную шариковую ручку, утверждает, что в
результате использования изобретения давление и ритмы сердца при
попадании в "гиблое место" нормализуются и соответствуют данным
измерений в нейтральной зоне, что подтвердили проведенные исследования.
Но наилучший выход - немедленно переставить кровать или письменный
стол подальше от опасного места.
Для того чтобы выявить неблагоприятные места в квартире или на
работе, многие советуют пользоваться самодельным маятником или веткой
каштана. Внутри сетки маятник, как правило, спокоен, а на линиях
Хартмана начинает раскачиваться. Однако для того, чтобы установить это,
необходимо обладать определенной чувствительностью и некоторыми навыками
- иначе можно допустить ошибку, которая, несомненно, отразится на
здоровье. Поэтому лучший советчик тут - специалист-экстрасенс.
ФРИМШТЕЙН
М. И. Фримштейн - русский ученый - построил удивительную теорию
человеческой памяти, которая понравилась многим
специалистам-нейрофизикам. Вот что о своей теории рассказывает сам
автор:
"Почему память фиксирует стрессовую информацию? Как десятки лет
работает уникальное хранилище памяти? Чем занята биохимическая
лаборатория мозга при переработке информации? Что несут электрические
импульсы по живым проводам нейронов?
На протяжении многих лет человек стремится понять феномены своей
памяти. Он вторгается в мозг микроэлектродами, включенными в цепи
чувствительных приборов; окрашивает тончайшие срезы мозговой ткани, а
затем рассматривает под микроскопом причудливые нейронные сети; выделяет
белки мозга обученных животных и, вводя полученные субстанции в
необученный мозг, пытается обнаружить в нем следы памяти... Такую работу
мало назвать ювелирной, она
Во много раз тоньше и кропотливее, однако тайны раскрываются
медленно, ибо в живой человеческий мозг удается заглянуть лишь во время
трагических событий.
Большинство загадок кроется в коре больших полушарий, сплетенной из
десятка миллионов нейронов. Они принимают, перерабатывают, хранят и
выдают информацию - действия, решения, прогнозы, образы. И все это
происходит благодаря биохимическим превращениям, благодаря замысловатым
ходам электрических импульсов, не прекращающимся даже во сне.
Достижения современной нейрофизиологии позволяют утверждать, что
информация кодируется цепочками нейронов, соединенных друг с другом
синапсами, которые временно обретают способность проводить сигналы при
выделении особых химических веществ - медиаторов. Даже учитывая
астрономическое число нейронов, вряд ли целесообразно сохранять их
сцепки на каждое заложенное в память событие или образ. Логичнее
предположить, что нейроны пребывают в "горячем резерве" и по специальным
командам образуют цепи. Увы, общей картины, поясняющей функционирование
таких цепей, пока нет, а без нее и нет ответов на поставленные вопросы.
Предпримем попытку нарисовать такую картину, опираясь на
установленные факты, известные связи и структуры мозга, изученные в них
процессы и собственные, порою несколько вольные гипотезы.
Однажды лауреат Нобелевской премии Ф. Крик, тщетно пытаясь объяснить
собеседнице принципы восприятия человеком окружающего мира, в отчаянии
спросил, каким образом видит мир она. Дама ответила, что, вероятно, у
нее в голове есть маленький телевизор. Тогда Крик задал еще один вопрос:
"А кто смотрит на его экран?" Собеседница убедилась в своем заблуждении.
Но истина не прояснилась. Комментируя этот диспут, ученый заметил, что
механизмы восприятия мира сложны и запутанны, а путь к их познанию
извилист и долог. Попробуем хотя бы немного по нему продвинуться.
Пять органов чувств (сенсорных систем) несут в мозг информацию о
зрительных образах, звуках, запахах, тепловых, механических и вкусовых
ощущениях. Несомые ими изображения "заканчиваются" на сетчатках глаз,
звуки - на барабанных перепонках, вкусовые ощущения - на рецепторах
языка и т, д. Затем первичные рецепторы преобразуют информацию в
электрические импульсы, которые по нервным волокнам устремляются в кору
больших полушарий. Как же мозг выделяет и усваивает информационные
сообщения из потока поступающих импульсов?
Главным "переключателем" сообщений считается подкорковое скопление
нейронов - ядра таламуса, или зрительные бугры (обонятельную луковицу,
имеющую сходную структуру, можно считать вынесенным ядром таламуса,
связи которого с первичными рецепторами предельно укорочены). Нейроны
таламуса связаны выходными каналами (аксонами) с проекционными зонами
коры. Электрическая активность проекционных зон при раздражении
рецепторов дает основание предполагать, что в этих зонах сигналы
рецепторов синтезируются в виде итоговой информации, которую и
воспринимает наше сознание.
Если воспользоваться современными техническими аналогиями, можно
сказать, что эти зоны как бы выполняют роль дисплея - нейродисплея,
который с помощью нейронных цепочек синтезирует из поступающих импульсов
условные образы и ощущения, неразрывно связанные с реакцией первичных
рецепторов на информацию-раздражитель. При этом преобразованные
сетчаткой зрительные образы включают зрительную кору (нейровизор),
преобразованные в импульсы звуки включают слуховую кору (нейрофон) и т,
п. Примечательная особенность нейродисплея заключается в его способности
одновременно синтезировать пять различных типов образов или ощущений,
взаимно дополняющих характеристику внешнего объекта.
Выходит, что наш гипотетический нейродисплей все же имеет какое-то
сходство с телевизором, поскольку превращает поток электрических
импульсов в информационные образы. Введение нового понятия отнюдь не
воскрешает идею гомункулуса, ведь дисплеем мы назвали вполне
определенные участки мозга - первичные зоны коры, электрическая
активность которых повышается в моменты приема информации.
Из нейродисплея довольно мощные пучки аксонов идут в ассоциативные
зоны коры, а оттуда часть аксонов возвращается в таламус, осуществляя
обратную связь. Лауреаты Нобелевской премии Д. Хьюбел и Т. Визель
отмечают, что для зрительной системы "функция этой цепи обратной связи
неизвестна". Так же обстоит дело и с другими сенсорными системами. Вряд
ли природа может позволить себе роскошь вводить ненужные каналы в таком
компактном органе, как мозг, поэтому попытаемся объяснить роль обратных
связей "нейродисплей - таламус".
Необходимость выделять жизненно важную информацию способствовала
эволюционному развитию мозга, который все более четко разделял
информацию по уровню ее актуальности. Если информация актуальна и
требует ответной реакции организма, в таламус направляются импульсы
положительной обратной связи, которые обеспечивают повторные включения
нейродисплея (поддерживают реверберацию включившихся нейронных цепей).
Тем самым информация удерживается на время, необходимое для принятия
решения. Это свойство нейродисплея позволяет нам, закрыв глаза, "видеть"
предметы (еще одна аналогия с телевидением, которое может повторить для
нас давно минувшее мгновение, скажем, мастерски забитый гол), "слышать"
отзвучавшую мелодию, ощущать тяжесть, которую мы уже сбросили с плеч...
Если информация неактуальна (или стала неактуальной), нейродисплей
выключает сам себя, посылая в таламус импульсы отрицательной обратной
связи. Происходит адаптация сенсорных систем к неактуальной информации
(поэтому, например, мы и не слышим привычного тиканья часов).
Эксперименты показывают, что существуют два различных интервала
времени, в которые кора реагирует на раздражение рецепторов: от 0,5
секунд и от 2 до 12 минут. Возможно, эти интервалы соответствуют двум
режимам работы нейродисплея: однократному включению при неактуальной
информации и повторным включениям при кратковременном удержании
информации в памяти. Если это предположение верно, то таламус,
нейродисплей и связи между ними образуют контур кратковременной памяти.
Кстати, при выходе из строя таламуса кратковременная память не
функционирует.
Порой мы читаем книгу и не воспринимаем текста, смотрим в окно и
ничего не видим, хотя глаза привычно фиксируют буквы и предметы. В эти
моменты наше внимание отвлечено, мы что-то вспоминаем, занимая мозг
переработкой другой, накопленной ранее информации. Следовательно,
нейродисплей не всегда реагирует непосредственно на сигналы рецепторов,
а подчиняется командам какого-то центра внимания, диспетчера,
управляющего памятью.
Гипотетический центр внимания должен, вероятно, находиться в
подкорковой области, которую называют старым мозгом. В самом деле,
животные, не имеющие коры, способны все-таки концентрировать свое
внимание на актуальной информации, иначе они не могли бы искать пищу или
защищаться от врагов. С другой стороны, такой центр должен иметь связи
со всеми зонами коры, чтобы воздействовать на них. Этим условиям
удовлетворяет довольно крупное скопление нейронов - неостриатум,
расположенный в центре мозга.
Связи нейронов неостриатума с корой и их электрическое взаимодействие
позволяют описать работу центра внимания следующим образом. При
попадании информации на внешние рецепторы в первую очередь возбуждается
неостриатум, который посылает свои сигналы в таламус и включает
нейродисплей. Информация удерживается в контуре кратковременной памяти
на время принятия решения, а из коры в неостриатум поступают импульсы
отрицательной обратной связи, отключая центр внимания и подготавливая
его к приему новой информации. Степень актуальности информации
неостриатум, вероятно, определяет по сигналам гипоталамуса, который
следит за процессами жизнеобеспечения организма.
Попробуем доказать такое предположение с помощью известных фактов.
Во-первых, нейроны неостриатума одними из первых реагируют на внешнюю
информацию, это явление называют опережающей электрической активностью.
Во-вторых, при выходе из строя неостриатума нарушается восприятие
зрительных образов (нейродисплей не включается!). В-третьих, неостриатум
имеет обширные связи с таламусом, гипоталамусом, а главное, со всеми
зонами коры.
Мы знаем, что часть информации из нейродисплея попадает в
долговременную память. При этом, по-видимому, важна не продолжительность
воздействия информации, а ее актуальность. При заучивании наизусть
повторные включения нейродисплея достигаются многократным раздражением
первичных рецепторов, т, е, искусственным повышением уровня актуальности
информации. Когда откладывается в памяти разовая, но стрессовая
информация (например, опасное дорожное происшествие), это связано,
вероятно, с общим возбуждением, повышением электрической активности и
самопроизвольными повторными включениями нейродисплея.
Известно, что в формировании долговременной памяти большую роль
играют биохимические процессы. Циклы включения нейродисплея,
по-видимому, можно связать с активизацией выделения медиаторов. При их
участии в ассоциативных зонах коры, получающих сигналы от нейродисплея,
коммутируются свои цепочки нейронов, кодирующие информацию длительного
хранения.
Ассоциативные зоны коры, располагая наибольшими скоплениями нейронов,
могут образовывать огромное количество оригинальных нейронных
комбинаций. Однако мало вероятно, что в памяти кодируются образы или
события в виде сложных, уникальных цепей. По понятным причинам их сборка
неизбежно привела бы к уменьшению быстродействия и надежности всей и без
того сложной системы.
Можно предположить, что при переводе в долговременную память
нейродисплей разделяет информацию на простые признаки объекта. Такие
кванты информации должны быть достаточно универсальными, чтобы
характеризовать все многообразие окружающих нас объектов и явлений, и в
то же время достаточно элементарными, чтобы для их кодирования не
требовались сложные нейронные ансамбли.
Итак, нейродисплей выделяет информационные кванты и посылает кодовые
сигналы в ассоциативную кору, где собираются цепочки нейронов,
соответствующие кирпичикам информации. Многократные включения таких
цепочек закрепляют в нейронах коры локальные программы, по которым при
обращении к долговременной памяти и происходит повторная сборка
необходимых нейронных цепей.
Вероятно, актуальная или часто употребляемая информация неоднократно
закладывается в память одинаковыми квантами в разных зонах коры. Это
позволяет пользоваться всей информационной библиотекой даже при
частичном повреждении участков коры. При переводе в хранилища памяти
информации, воспринимаемой одними сенсорными системами, нередко
используются кванты других сенсорных систем. В такие моменты наблюдается
повышение электрической активности многих зон коры. И запах бензина
ассоциируется в нашей памяти с канистрой, вкус лимона - с желтым
продолговатым плодом, нежный женский голос - с его обладательницей. При
обращении к памяти протекают процессы, обратные запоминанию: повышается
электрическая активность коры, запускаются программы коммутации нейронов
в ассоциативных зонах, собранные цепочки генерируют потенциалы, которые
поступают в таламус и включают нейродисплей, синтезирующий кванты
припоминаемой информации. Можно предположить, что нейродисплей
накапливает кванты и постепенно из их мозаики синтезирует образ или
событие. При этом "правильные" включения нейронов закрепляются
положительными обратными связями таламус-кора, а ненужные включения
гасятся отрицательными связями. Отсутствие какого-либо кванта приводит к
известному ощущению - припоминаемый объект "крутится" в памяти, но не
синтезируется полностью: полузабытый номер телефона, "лошадиная" фамилия
из чеховского рассказа.
Чтобы завершить описание процесса переработки информации, необходимо
показать, как накапливаются, а потом извлекаются кванты памяти, где и
как размещены программы сборки нейронных ансамблей. Считается, что
некоторые программы инстинктивного поведения животных (например,
миграции птиц) закладываются в память с помощью генетических кодов.
Должно быть, обучение на протяжении многих поколений выработало одни и
те же программы поведения, закрепленные генетически. Таким образом,
весьма сложные программы могут быть записаны на клеточном уровне,
посредством молекулярных вариаций. Значит, уместно предположить, что и
сравнительно простым программам - квантам памяти совсем нетрудно
разместиться в "кладовых" нейрона.
Процесс образования таких программ можно представить следующим
образом. По командам нейродисплея происходят многократные сборки цепочек
нейронов ассоциативных зон, что приводит к накоплению в синапсах особых
модификаций медиатора. Тогда можно предположить, что при извлечении
квантов памяти поступление импульса на вход нейрона (дендрит) будет
вызывать выделение медиатора в соответствующий выходной синапс и
привычное (натренированное) включение нейрона в цепь информационного
кванта, синтезируемого нейродисплеем. Такой механизм неплохо согласуется
с известной иммунохимической гипотезой памяти, которая связывает
нейронные сборки с синтезом в них так называемых антител-коннекторов.
Если допустить, что во время сновидений идет проверка и тренировка
памяти путем включения ее контуров, то, наверное, возможны методы
управления сновидениями, которые позволят улучшить деятельность мозга.
Определение количества циклов включения нейродисплея, необходимого для
перевода информации в память, может оказать влияние на методы обучения
(вспомним известный прием - вклеивание рекламных кадров в остросюжетный
фильм). Не исключено, что некоторые психические заболевания (например,
навязчивые идеи) связаны с самопроизвольными включениями нейронов в одну
и ту же цепь. И если это так, то избавиться от недуга можно будет,
искусственно разрывая патологические нейронные сцепки и закрепляя в
па