Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Наука. Техника. Медицина
   Наука
      ред. А. Лельевр. Эврика-87 -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  - 40  - 41  - 42  -
занимать, протянуть к нему брезентовый рукав, направить в него воду - и закрутит вода, завращает небольшую турбину и связанный с ней клиноременной передачей генератор. Тут же пойдет по проводам ток стандартным напряжением 220 вольт, закипит чай на электроплите, загорятся лампочки. Лампочек может быть довольно много: если по 100 свечей, то 15 штук. Здесь не только на освещение хватит, но и небольшую иллюминацию можно устроить. Хотя бы по случаю осуществления давней мечты чабана - приходу электричества в его жизнь и быт. Основные технические параметры агрегата таковы. Мощность - полтора киловатта, но у разных модификаций может быть и больше и меньше; это по желанию конструкторов и потребителей. Получаемый ток - переменный, трехфазный, стандартной частоты 50 герц. Напряжение - 220 вольт, но может быть и 380, КПД-0,5, неплохо для любой электростанции. Масса - 85 килограммов. Тяжеловата, конечно, но, учитывая размещение на тележке, передвижка ГЭС в случае нужды с места на место вполне по силам взрослому мужчине. Предельная высота, на которой может работать станция,- 4 километра над уровнем моря. Диапазон температур окружающей среды - от -30 до +40ёС, предельная относительная влажность - 90 процентов. При полностью развернутом стометровом рукаве уклон водотока должен составлять 3-4 градуса. Понятно, разворачивать рукав на всю стометровую длину (он состоит из 10 быстросоединяемых 10- метровых колен) надо не всегда. Если угол наклона потока не 4, а 10 градусов, достаточно 30-метрового участка рукава. Все параметры приведены для ГЭС мощностью 1,5 киловатта. Возможен и совсем миниатюрный вариант станции - на 2-3 лампочки, на 200-ЗООС ватт. Там, конечно, и перепад высот,! и расход воды могут быть меньше, и пд весу станция будет такой, что ее можно переносить за плечами, в обыч* ном рюкзаке. Можно создать "карманную ГЭСи и большей мощности. Кстати, агрегат мощностью 3 киловатта уже изготовлен и испытан. Он тоже показал некплохие эксплуатационные результат"! Идея и конструкция станции настолько просты, что казалось непостижимым, почему рукавную ГЭС не изобрели раньше. Признаться, у самих сотрудников научно-исследовательского отдела камнем на душе лежало сомнение: не изобрели ли они велосипед? Не созданы ли еще где-либо в мире аналогичные конструкции? Дважды Ташкентский филиал Всесоюзного центра патентных услуг проводил широкий поиск аналогов в отечественной и зарубежной практике на "глубину" в 20 лет. И оба раза ответ был один: ничего похожего никто и нигде еще не изобретал. В ходе работы над "микроГЭС" ее создатели получили уже 7 авторских свидетельств на изобретения; еще 2 заявки - в стадии рассмотрения. Небезынтересно сопоставить технико-экономические показатели рукавной ГЭС с показателями бензоэлектрической станции той же мощности. Себестоимость киловатт-часа электроэнергии соответственно 0,5 и 35 копеек, эксплуатационные затраты-117 и 3195 рублей в год. Поистине несопоставимые величины! Даже не слишком совершенные, в кустарных условиях изготовленные агрегаты экономят около 2 тысяч рублей в год. А при серийном изготовлении, когда ряд узлов можно будет делать из пластмасс, по прогрессивной технологии, экономия составит 3,5-4 тысячи рублей в год. О кустарном изготовлении мы упомянули не случайно. Все находящиеся в эксплуатации агрегаты сделаны в мастерских называвшегося выше киргизского научно-исследовательского отдела энергетики. Сделано их немного-меньше десятка, включая выставочные образцы. Причем три агрегата отправлены за рубеж: один - в Индонезию, два - на Кубу. Каковы же наши потребности? Министерство сельского хозяйства Киргизии берется внедрять по 1000 рукавных ГЭС ежегодно. Еще по 400-500 агрегатов согласны закупать другие ведомства республики. 1500 агрегатовтак оценивается годовая потребность республик Средней Азии и Казахстана. 1800-2100-потребность Грузии, Армении и Азербайджана. 1000-потребность северокавказских автономных республик. 1500-предприятий Сибири и Дальнего Востока. Всего получается, что ежегодно надо выпускать никак не меньше 6 тысяч агрегатов. При этом в расчетах учитывалась потребность только государственных организаций, а также колхозов и совхозов. А ведь рукавная ГЭС может стать отличным подспорьем в личном приусадебном хозяйстве. Внедрение таких станций в этой сфере поможет в ряде случаев обойтись без использования энергии государственных электросетей, которой в некоторых регионах не хватает. Энергомост в будущее На небе ни облачка, а над опытным полигоном Ленинградского политехнического института имени М. И. Калинина время от времени вспыхивают зарницы. Это отсвет искусственных молний. Здесь испытывается экспериментальный пролет суперэлектролинии напряжением три миллиона вольт. Из окон лабораторного корпуса хорошо видны ажурные порталы с чуть провисающими проводами, напоминающими гигантские качели. - Одно это "русло" способно вместить электроэнергию, вырабатываемую десятью такими гигантами, как Саяно-Шушенская ГЭС,- поясняет руководитель экспериментов, заведующий кафедрой электрических аппаратов, профессор Г. Александров.- Подобные энергомосты потребуются в будущем для транспортировки огромного количества энергии из районов Сибири на Урал и в центр страны. Естественно, что супертрассам понадобятся и специальная аппаратура, оборудование. Заложенные в них идеи и конструктивные решения будут проверяться в серии экспериментов на полигоне политехнического института. Одно из основных требований к линии электропередачи - большой запас надежности. И чтобы его обеспечить, нужны тщательные исследования. Этим мы и занимаемся, испытывая реальные изоляционные конструкции линий и подстанций. Известно: чем выше напряжение, тем меньше потери в линии. Испытания "трехмиллионника" помогают ученым лучше понять явления, без тщательного изучения которых трудно будет направить поток энергии в нужное русло. Ведь задачи поставлены грандиозные уже на ближайшие годы: предусматривается продолжить формирование Единой энергетической системы страны, осуществить строительство межсистемных линий электропередачи напряжением 500, 750 и 1150 киловольт переменного тока и 1500 киловольт постоянного тока. Научная база для их создания уже есть, и сейчас ученые работают над линиями переменного тока в 1800- 2000 киловольт. А "трехмиллионник"? Иногда его называют энергомостом XXI века. Действительно, пока рано говорить о практической реализации дерзкой идеи. Но исследования ленинградских политехников показывают, что задача эта отнюдь не из области фантастики, что в принципе она выполнима. - Конечно, мы стараемся не только заглянуть в завтрашний день, решаем и сегодняшние задачи,- отмечает один из участников экспериментальной программы, кандидат технических наук Г. Подпоркин.- На полигоне испытываются, например, компактные электрические линии, позволяющие многократно увеличить пропускную способность в том же классе напряжений. Исследования показали, что вопреки привычным представлениям можно значительно сблизить провода. Но для этого потребовалось жестко закрепить их, ведь при ветре они могут схлестнуться, и тогда - короткое замыкание. За кажущейся простотой этого решения - долгий поиск оптимального расстояния между проводами, месяцы испытаний на полигоне в разную погоду, при различных электрических режимах, проектирование и проверка оригинальных конструкций изоляторов. Среди электротехников Ленинград иногда называют "высоковольтной столицей мира". Право на этот почетный, хотя и неофициальный титул поддерживают и работы исследователей на уникальном полигоне политехнического института, где создают и испытывают суперэнергомосты. Металлический литиймишень для нейтрино Вместе с огромными потоками энергии Солнце посылает на Землю нейтрино, которые образуются в недрах звезды при термоядерных реакциях. Первые попытки зарегистрировать солнечные нейтрино относятся к 1946 году. Полученные вплоть до последнего времени экспериментальные данные указывают, что на Землю приходит почти в 3 раза меньше солнечных нейтрино, чем предсказывает теория. Причин такого расхождения может быть несколько. Первая: неверны теоретические расчеты; нужно уточнить параметры ядерных взаимодействий, которые приводят к образованию нейтрино. Новые расчеты потребуют более высокой точности, а теоретики не всегда могут ее обеспечить. Вторая причина: неверна сама солнечная модель, а значит, возможно, неверны представления об эволюции звезд. Если, например, учесть процессы перемешивания вещества в недрах Солнца, то "теоретический" поток нейтрино станет меньше, но перемешивание противоречит нынешней модели Солнца. Третья причина: неверны сами представления о физических свойствах нейтрино. Возможно, в расчетах нужно учитывать хоть и небольшую, но отличную от нуля массу покоя нейтрино. Таким образом, расхождение между расчетами и экспериментальными данными сравнительно небольшое, но из-за него, возможно, придется пересмотреть некоторые фундаментальные устои физики. Если, конечно, не будут получены новые экспериментальные результаты. Экспериментаторы ищут другие методы измерения потока нейтрино, приходящего на Землю. Часто предлагалось использовать в качестве мишени для нейтринного детектора ядро лития. Изотоп лития, взаимодействуя с нейтрино, образует радиоактивное ядро бериллия. Можно использовать в детекторе водный раствор соли хлористого лития, но это связано со многими трудностями. В Институте ядерных исследований АН СССР предложили использовать в качестве мишени в нейтринном детекторе металлический литий, что позволит резко уменьшить объем самого детектора и снимет ряд других сложных проблем. В металлическом детекторе, как и в любом другом, нужно решить сложную задачу: извлечь из лития буквально несколько атомов бериллия, которые образуются в нем под действием солнечных нейтрино. Исследователи показали, что если помещенный в металлический стакан литий расплавить в вакууме (литий очень активный химический элемент), а затем одновременно его охлаждать и продавливать через фильтр в дне стакана, то на фильтре собирается практически весь бериллий. Очевидно, бериллий в литиэвом слитке присутствует в виде соединений с кислородом и азотом - окисла и нитрида, которые кристаллизуются и выпадают в осадок раньше, чем литий. Поэтому жидкий литий проходит через фильтр, а бериллий на нем остается. Чтобы доказать эффективность предложенного метода, экспериментаторы облучили на циклотроне слиток лития весом 60 граммов. Энергичные протоны пронизывали образец и "нарабатывали" бериллий во всем объеме. После того как облученный образец расплавили и профильтровали, на фильтре собралось 98 процентов бериллия. Значит, предложенный метод позволит эффективно извлекать из лития практически все атомы бериллия, которые "нарабатывают" солнечные нейтрино. На следующем этапе "промежуточного" эксперимента новую методику предполагают испробовать на мишени из металлического лития массой 100 килограммов. Полномасштабный эксперимент потребует десятки тонн лития. "Сверхсветовой мир" Можно ли путешествовать во времени? Не мысленно, как это делают писатели-фантасты, а по-настоящему - с помощью определенных технических средств? Или, по крайней мере, построить "хроноскоп", который позволял бы рассматривать детали прошлого подобно тому, как микроскоп позволяет разглядывать мелкие детали в пространстве? Теория относительности научила нас, как ускорять и замедлять время. Теперь, казалось бы, остался один шаг - научиться его поворачивать. Что мешает этому? Только лишь наше неуменье, недостаток знаний или же какие-то фундаментальные законы? Физика XX века уже приучила нас к мысли, что многое из считавшегося ранее принципиально недопустимым может происходить в каких-то особых, специфических условиях. Действительно, формулы теоретической физики подсказывают, что, если бы удалось создать генератор лучей, обгоняющих свет, мы смогли бы высвечивать цепочки событий в обратном направлении - от настоящего в прошлое, а опыты на ускорителях элементарных частиц обнаружили явления, где противопоставление прошлого и будущего приводит к неоднозначности. Может, все же удастся создать "машину времени" и "хроноскоп" хотя бы в микромире? Поиском ответов на эти вопросы заняты многие физические лаборатории. Скорость и время В старой, ньютоновской физике время абсолютно - показания часов не зависят ни от скорости их движения, ни от каких-либо других причин. Часы на башне собора и в движущемся дилижансе всегда показывают одно и то же время. Иначе ведет себя время в современной физике быстродвижущихся тел. Стрелки перемещающихся часов идут медленнее неподвижных, их отставание будет тем заметнее, чем больше скорость движения. Правда, даже для космических кораблей, пересекающих сегодня просторы космоса, отставание времени еще очень мало и станет ощутимым, когда их скорости возрастут по крайней мере в несколько сот раз. Но вот в мире элементарных частиц эффект замедления времени весьма заметен. Например, время жизни покоящегося мюмезона - около миллионной доли секунды, ничтожный миг; далее мю-мезон распадается на более легкие частицы. Однако быстрый мю-мезон, рожденный космической частицей в высотных слоях атмосферы, становится долгожителем. Он живет так долго, что успевает пройти сквозь всю толщу воздуха и распадается лишь глубоко под землей. Пользуясь эффектом замедления времени, физики транспортируют пучки ускоренных короткоживущих частиц на большие расстояния. Подобное оборудование имеется во многих физических лабораториях. Если движется не только наблюдаемое тело, но и сам наблюдатель, то его скорость тоже влияет на длительность происходящих с телом событий. Например, длительность события будет различной в зависимости от того, наблюдают его с космодрома или с борта стремительно летящей ракеты. Однако порядок событий, то есть какое из них произошло раньше, а какое позднее, во всех случаях остается неизменным. Выбором системы координат - движущейся или неподвижнойможно сократить или, наоборот, растянуть продолжительность события, но направления времени изменить нельзя. Для объяснения наблюдаемой в опытах зависимости времени (и размеров тел) от скорости движения в начале нашего века была создана новая наука-теория относительности, само название которой говорит об относительности определенных физических величин. Эта теория прекрасно согласуется с экспериментом и является фундаментом современной физики. Хотя теория относительности создана на основе "достоверных явлений", протекающих со скоростями, меньшими или равными скорости света, в ее формулах нет никаких условий или ограничений, запрещающих их применение в "засветовой области" - при сверхсветовых скоростях. И вот тут обнаружилась замечательная особенность этих формул. Они приводят к заключению, что в процессах с участием "сверхсветовых тел" от скорости зависит не только длительность, но и сам временной порядок событий! Пилот одной ракеты скажет, что событие А произошло раньше события Б, а пилот второй ракеты, движущейся с иной скоростью, увидит их в обратном порядке. Время для этих наблюдателей будет идти в противоположных направлениях, то, что для одного прошлое, для другого - будущее. Это похоже на то, как если бы в кино прокрутили пленку в обратном направлении. И нельзя сказать, какое направление времени истинное, как нельзя установить, какая сторона является правой, а какая - левой. Для меня это - правая, а для стоящего лицом ко мне человека - левая. И мы оба правы - относительность! Временная динамика сверхсветовых явлений разительно отличается от того, к чему мы привыкли в "досветовом мире". В процессах, протекающих быстрее света, подходящим выбором системы координат можно обратить время вспять. Получается, что сверхсветовые частицы - это объекты, свободно путешествующие во времени. Давняя мечта фантастов! Но вот существуют ли в природе такие частицы? Как и где следует их искать? И вообще, не приводит ли предположение о сверхсветовых скоростях к противоречию с другими положениями современной физической теории, ведь не все же гипотезы физиков реализуются в природе... С другой стороны, если сверхсветовых скоростей нет, то это, в свою очередь, потребует объяснения: может быть, за этим кроется какой-то новый физический закон? Факты и предположения В научно-фантастическом романе С. Снегова "Люди как боги" звездолеты летают с любыми скоростями - в пять, десять, сто раз быстрее света! Среди созвездий они ведут себя, как грузовик на узкой улице: развернулся в созвездии Персея, задним ходом углубился в соседнее шаровое скопление, оттуда устремился в созвездие Плеяд... Феерическая картина! А собственно, почему это невозможно? Правда, в любом учебнике физики можно найти утверждение, что в природе существует некоторая максимальная скорость. Это скорость света в вакууме. Считается, что ни одно тело не может двигаться быстрее. Однако это всего лишь постулат, теоретическая гипотеза. То, что в эксперименте еще никогда не встречались сверхсветовые скорости, нельзя рассматривать как их стопроцентный запрет. Не встречались при одних условиях, могут встретиться при других. Пока не найдены законы, которые это исключают, вопрос остается открытым. Большинство физиков сегодня склоняется к мнению, что сверхсветовых скоростей в природе нет, тем не менее вопрос продолжает беспокоить. В журналах нет-нет да и вспыхивает снова дискуссия о сверхсветовых явлениях. Один аспирант составил список статей по этой проблеме, их оказалось более полутора тысяч! И основная часть появилась в журналах в последние десятьпятнадцать лет. Действительно, что ограничивает скорость движения? Ведь скорость света, мгновенная по сравнению со скоростями, с которыми нам приходится иметь дело в нашей повседневной жизни, оказывается весьма скромной при переходе к космическим масштабам. Даже с аппаратами, исследующими ближайшие к нам планеты Солнечной системы, обмен сигналами происходит уже с весьма заметным запаздыванием. Неужели нельзя передвигаться и передавать информацию быстрее? Чтобы разобраться в этих сложных вопросах, познакомимся сначала со свойствами, которыми должны обладать сверхсветовые частицы и состоящие из них тела. Зазеркалье скоростей Частицы, движущиеся со скоростями, большими скорости света, принято называть тахионами - от греческого слова "тахис", что означает "быстрый", "стремительный". Досконально изучить их свойства можно будет после того, как такие частицы откроют на опыте. Однако некоторые их особенности можно предсказать теоретически, на основе уже известных физических законов. Один из них - взаимосвязь массы и скорости частицы. При обычных условиях эта взаимосвязь чрезвычайно слабая и мы ее просто не замечаем. Однако, если скорость тела становится сравнимой по своей величине со скоростью света, масса тела начинает возрастать, и дальнейшее увеличение скорости требует затрат все большей и большей энергии. Это явление называют световым барьером. Приближаться к нему так же трудно, как трудно подниматься на крутую гору путнику, имеющему за плечами рюкзак, тяжелеющий с каждым метром подъема. Чтобы достичь скорости света, разгоняя какие-либо частицы, например, легкие электроны, пришлось бы затратить бесконечное количество энергии. Казалось бы, это исключает всякие надежды на открытие сверхсветового вещества. Долгое время так и считали. Однако если посмотреть внимательнее, то можно заметить, что на самом деле отсюда вытекает лишь невозможность превращения обычных, до

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  - 40  - 41  - 42  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору