Страницы: -
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
19 -
20 -
21 -
22 -
23 -
24 -
25 -
26 -
27 -
28 -
29 -
30 -
31 -
32 -
33 -
34 -
35 -
36 -
37 -
38 -
39 -
40 -
41 -
42 -
43 -
44 -
45 -
46 -
47 -
48 -
49 -
50 -
51 -
52 -
53 -
54 -
55 -
56 -
57 -
58 -
59 -
60 -
61 -
62 -
63 -
64 -
65 -
имер, большие молекулы синтетических полимеров. Такие молекулы развиваются, растут, усложняют структуру) присоединяя частички "корма", растворенные в среде, где находятся "носители". Носители подбираются так, чтобы их развитие, их последовательные изменения изодинамически соответствовали изменениям определенной системы (явления) во внешнем мире. Каждая такая молекула - это "генотип", который развивается в соответствии с представляемой им ситуацией. Вначале мы вводим в резервуар большое количество (несколько миллиардов) молекул, о которых нам уже известно, что первые этапы их изменений идут в нужном направлении. Начинается "эмбриогенез", означающий, что траектория развития носителя соответствует динамической траектории реального явления. Развитие контролируется связями с реальной ситуацией. Эти связи являются селективными (это значит, что "неправильно развивающиеся" молекулы отсеиваются). Все молекулы вместе образуют "информационную популяцию". Популяция поочередно переходит из одного резервуара в другой. Каждый резервуар является селекционной станцией. Сокращенно назовем ее "ситом". "Сито" - это аппаратура, соответствующим образом подключенная (например, через автоматические манипуляторы, перцептроны и т.п.) к реальному явлению. "Сито" переводит структурную информацию о состоянии явления на молекулярный язык и создает особый вид микроскопических частичек, каждая из которых представляет собой "запись состояния, явления" или мгновенное сечение его динамической траектории. Таким образом, сталкиваются два потока частиц. Первые своим состоянием, достигнутым к этому моменту в ходе своего развития как самоорганизующихся систем, "предсказывают" состояние реального явления. Второй поток - это частицы, созданные в "сите", несущие информацию о том, каково действительное состояние явления. В "сите" происходит реакция, подобная осаждению антигенов антителами в серологии. Но осаждение происходит на основе различия между "истиной" и "ложью". Осаждаются все частицы, которые правильно предсказывали явление, поскольку их молекулярная структура "согласуется" с молекулярной структурой ловушки на частицах, высылаемых "ситом". Осажденные носители как "правильно предсказавшие" состояние явления поступают на следующую селекцию, где процесс повторяется (они снова сталкиваются с частицами, несущими сведения об очередном состоянии явления; частицы-носители, правильно "предугадавшие" это состояние, вновь осаждаются и так далее). В конце концов мы получаем определенное количество частиц, которые представляют собой изодинамическую, селекционированную модель развития всего явления. Зная их начальный химический состав, мы знаем тем самым, какие молекулы можно считать динамическими моделями развития исследуемого явления. Таков пролог информационной эволюции. Мы получаем определенное количество информационных "генотипов", хорошо предсказывающих развитие явления X. Одновременно проводится аналогичное "выращивание" частиц, моделирующих явления Y, Z,..., которые относятся ко всему исследуемому классу. Допустим, что мы получили, наконец, носители для всех семисот миллионов элементарных явлений этого класса. Теперь нам нужна "теория класса", которая состоит в определении его инвариантов, то есть параметров, общих для всего класса. Следовательно, надлежит отсеять все несущественные параметры. Мы предпринимаем выращивание "следующего поколения" носителей, которые моделируют уже не развитие реального явления, а развитие первого поколения носителей. Поскольку явление содержит бесчисленное количество параметров, поддающихся выявлению, был проведен предварительный отбор существенных переменных. Их было очень много, но, конечно, это не могли быть все параметры. Предварительный отбор, как уже говорилось, проводится "классическим" методом, то есть его выполняют ученые. На сей раз новое поколение носителей тоже не моделирует всех параметров развития первого поколения, но теперь селекция существенных переменных происходит сама собой (методом каталитического осаждения). Различные экземпляры носителей второго поколения игнорируют в ходе своего развития те или иные параметры первичных носителей. Некоторые из них игнорируют существенные параметры, в результате чего их динамические траектории отклоняются от "правильного предсказания". Такие экземпляры непрерывно исключаются благодаря "ситам". Наконец оказываются отобранными те носители второго поколения, которые, несмотря на игнорирование определенного количества параметров, "предсказали" всю траекторию развития первичных носителей. Если строение носителей, добравшихся "до цели" во втором круге, практически одинаково, это означает, что мы получили, то есть "выкристаллизовали", теорию исследуемого класса. Если все еще имеется (химическая, топологическая) разнородность носителей, нужно повторить отбор с целью дальнейшего исключения несущественных параметров. "Кристаллизованные теории", или, если угодно, "теоретические организмы" второго захода, в свою очередь начинают "конкурировать" в способности к отображению с аналогичными частицами, которые образуют "теорию" иного класса. Таким образом, мы стремимся получить "теорию класса классов". Этот процесс можно продолжать сколь угодно долго с целью получить различные степени "теоретического обобщения". Хотя это и недостижимо, но можно представить себе некий "перл познания", некий "теоретический суперорганизм" на самой вершине этой эволюционной пирамиды: это "теория всего сущего". Она, конечно, невозможна; мы говорим о ней, чтобы сделать более наглядной аналогию с "перевернутым древом" эволюции. Приведенная концепция, хотя и весьма утомительна в изложении, все же очень примитивна. Следует подумать о ее усовершенствовании. Стоило бы, например, применить на "ферме" нечто вроде "овеществленного ламаркизма". Известно, что теория Ламарка о наследовании приобретенных признаков не соответствует биологическим фактам. Но прием наследования "приобретенных признаков" можно было бы применить в информационной эволюции, чтобы ускорить "теоретические обобщения". Мы говорили, правда, о "кристаллизованной" информации, но с тем же успехом "теориеносные" молекулы могли бы быть иными (например, полимерными). Возможно также, что в некоторых аспектах их сходство с живыми организмами будет весьма значительным. Быть может, следовало бы начинать не с молекул, а с довольно больших конгломератов, либо даже с "псевдоорганизмов", или "фенотипов", представляющих собой информационную запись реального явления, и стремиться к тому, чтобы (опять-таки в противоположность обычным биологическим явлениям) такой "фенотип" породил свое "обобщение", свой "теоретический план", то есть "генотип-теорию". Впрочем, оставим эти замыслы, потому что все равно ни один из них нельзя проверить. Заметим лишь, что каждая "молекула-теория" является источником информации, обобщенной до закона, которому подчиняется система. Эту информацию можно перекодировать на доступный нам язык. Молекулы свободны от ограничений формальных математических систем - они могут смоделировать поведение трех, пяти или шести гравитирующих тел, что математически невыполнимо (по крайней мере строгим путем). Приведя в движение носителей "теории пяти тел", мы пользуемся данными о положении реальных тел. С этой целью нам придется "пустить их в ход" в соответствующей аппаратуре так, чтобы траектория их развития благодаря обратным связям подстроилась к траектории исследуемой системы. Разумеется, это предполагает существование механизмов авторегуляции и самоорганизации в самих носителях. Можно, пожалуй, сказать, что мы уподобляемся Ляо Си Мину, который обучал, как бороться с драконами, - единственная загвоздка состояла в том, что познавший его науку нигде не мог найти дракона. Мы тоже не знаем ни того, как создать "информационные носители", ни того, где найти материал для этой цели. Во всяком случае, мы показали, как можно представить себе отдаленное будущее "биотехнологии". Как видно из сказанного, у нее и в самом деле немалые возможности. Приободренные этим, представим в заключение еще одну биотехнологическую возможность. Отдельным "классом в себе" были бы такие "информациеносные сперматозоиды", задание которых состояло бы не в изучении, а в продуцировании явлений или устройств. Из таких "сперматозоидов" или "яйцеклеток" могли бы возникать всевозможные нужные нам об®екты (машины, организмы и т.п.). Разумеется, такой "рабочий сперматозоид" должен был бы располагать как закодированной информацией, так и исполнительными органами (наподобие биологического сперматозоида). Зародышевая клетка содержит информацию о том, какова конечная цель (организм) и каков путь к этой цели (эмбриогенез), но материалы для "построения плода" ей даны в готовом виде (в яйце). Однако мыслим еще и такой "рабочий сперматозоид", который обладает не только информацией о том, какой об®ект он должен соорудить и каким способом это надо сделать, но еще и о том, какие материалы окружающей среды (например, на другой планете) надлежит превратить в строительный материал. Такой "сперматозоид", если он обладает соответствующей программой, будучи высажен в песок, построит все, что можно создать из кремния. Возможно, ему придется "подбросить" некоторые иные материалы и, конечно, подключить к нему источник энергии (например, атомной). Но на этом кульминационном панбиотехнологическом аккорде самое время завершить разговор [XIII].
1 См. С.Амарел, Подход к автоматическому формированию теории, сб. "Принципы самоорганизации", изд-во "Мир", 1966. 2 И.И.Шмальгаузен, Основы эволюционного процесса в свете кибернетики, "Проблемы кибернетики", 1960, No 4. 3 У. Росс Эшби, Конструкция мозга, ИЛ, 1962. 23-618
[ Титульный лист ]
[ Содержание ]
<= Глава седьмая (a) ]
[ Глава седьмая (c) =>
Станислав ЛЕМ
СУММА ТЕХНОЛОГИИ
[ Титульный лист ]
[ Содержание ]
<= Глава седьмая (b) ]
[ Глава седьмая (d) =>
ГЛАВА СЕДЬМАЯ
СОТВОРЕНИЕ МИРОВ
(c) ГНОСТИЧЕСКОЕ КОНСТРУИРОВАНИЕ Пора об®яснить, почему технологическому аспекту развития я уделяю в этой книге больше внимания, чем научному, хотя наука является двигателем технологии. Дело в том, что наука, если можно так выразиться, менее сознает самое себя, чем технология, поскольку она хуже технологии ориентируется в своих собственных ограничениях. Эти ограничения касаются не столько того, о ч_е_м говорит наука, то есть мира, целостные изображения которого она предлагает (как союзник философии, иногда как соперник или же как ее корректор), сколько того, к_а_к_и_м о_б_р_а_з_о_м действует наука. Наука предсказывает будущие состояния, но своих собственных будущих состояний, собственного пути развития она предсказать не может. Она создает "хорошие" - оправдывающиеся на практике - теории, но сама "не знает хорошенько", как их создает. Она исследует эмпирические явления, поддающиеся проверке опытом, но опять-таки сама себя не способна трактовать так последовательно эмпирически. Довольно легко договориться о том, что представляют собой производственные рецепты технологов. Но по вопросу о том, что представляют собой научные теории, такого всеобщего согласия не существует. Обычно различают феноменологические теории, то есть "срочные" обобщения, применимые как рабочие гипотезы к определенной группе или классу явлений, и теории об®ясняющие. Деление это, может быть, и неплохое, но беда в том, что зачастую не очень понятно, как применять его на практике. Одна и та же теория по отношению к одним явлениям может быть феноменологической, а по отношению к другим - об®ясняющей. Например, теория Ньютона об®ясняет законы Кеплера, которые имеют чисто феноменологический характер, поскольку описывают обращение планет, но не об®ясняют, почему они обращаются именно так, а не иначе. В свою очередь сама теория Ньютона - в сопоставлении с теорией относительности - оказывается феноменологической, потому что она не об®ясняет свойств гравитационного пространства, а лишь принимает их как данное, тогда как эйнштейновская теория ставит метрику пространства в зависимость от наличия в нем гравитирующих масс. Но и "об®яснительная мощность" теории Эйнштейна тоже имеет свои ограничения, поскольку теория эта не вскрывает, "что такое гравитация". Впрочем, об®яснение всегда является ступенчатым процессом, который должен остановиться в каком-то месте; это - сопоставление одних фактов (формально уже обобщенных) с другими обобщениями; и всему этому не видно конца. Во всяком случае, как показывают примеры, старая теория, входящая в состав новой, "демаскирует" свой феноменологический характер; но пока этого не произойдет, суждения специалистов по этому поводу могут быть (и бывают) различными. Чем руководствуются в такой ситуации специалисты? Их позиция зачастую предопределяется факторами психологического порядка. Так, например, Эйнштейн считал квантовую механику феноменологической теорией, поскольку не мог согласиться с принципиально статистическим характером микроявлений ("Господь Бог не может играть с миром в кости"). Я считаю, что если научную теорию можно не только подвергнуть проверке опытом и не только вмонтировать в уже возведенное здание "информационной структуры" всей нашей науки, если, помимо этого, ее можно еще и переживать суб®ективно, испытывая ощущение, будто благодаря этой теории мы обретаем особое состояние "понимания сути дела", дающее нам интеллектуальную удовлетворенность, то это вроде как люкс-надбавка и ее следует принимать с сердечным благодарением, но нельзя домогаться в категорической форме, всегда и от всех явлений. На процессы понимания слишком уж сильно влияют особенности нашего, по неизбежности несколько "животного", разума, чтоб мы имели право требовать от науки об®яснений, которые столь полно удовлетворяют наше любопытство, что можно будет не только с ними свыкнуться, но еще и "пережить" их "с пониманием". Если бы не дедуктивные системы математики, мы были бы почти совершенно беспомощны перед всеми явлениями, выходящими за рамки нашей биологической среды, то есть того, что доступно нашим зрительно-двигательным и тактильно-слуховым ощущениям. Призыв создавать теории "как можно более безумные", которому вторит хор физиков, зовет именно радикально порвать те мощные связи, которые соединяют даже наши абстракции с первоосновой повседневного опыта. Не о "безумных" идеях здесь на самом деле идет речь, а о том, чтобы освободиться от того "животного начала" - в биологическом и психологическом смысле, - которое препятствует дальнейшему продвижению нашего гнозиса. Правда, неизвестно, в какой мере возможно это дальнейшее продвижение и будет ли где-нибудь положен ему предел. Ибо можно считать, что достигнуть понимания значений - это в конечном итоге немногим более, чем приобрести надлежащие навыки в оперировании ими. Но, с другой стороны, известно ведь, что вообще все сконструированные языки, включая и самые формализованные, не являются и не могут являться полностью автономными и что своим существованием и функционированием они всегда обязаны в конце-то концов тому, что "уходят корнями" в "нормальные языки". Последние же формируются под непрестанным давлением своеобразной структуры и закономерностей повседневного мира, представляющего собой наше естественное окружение, которое нельзя обменять ни на какое иное. Известно также, что в науке нельзя ссылаться ни на какие "очевидности", ибо они представляют собой лишь результат окостенелых навыков - навыков, обусловленных материальным и социальным уровнем функционирования человеческих существ в данных исторических условиях. Проклятие многих философских систем, тот камень, на который находила в конце концов их остро наточенная коса или бритва, - это как раз иллюзорность тех "первичных сущностей", тех именно "очевидностей", которые при надлежащем подборе должны составлять фундамент всякой системы, ведь в противном случае разверзается бездна бесконечной сводимости, провал некоего regressus ad infinitum или вращения в порочном круге. Мы поспешно ретируемся из сферы столь опасных рассуждений, удостоверясь в общем, что наука сама толком не знает, чем же являются ее теории, и что ей очень не хватает некой метатеории всякого научного теоретизирования. При таком положении дел, пожалуй, наиболее перспективным кажется информационный подход, поскольку он меньше других отягощен суб®ективными или волюнтаристскими наслоениями. Мы не утверждаем ни того, что он идеален и безошибочен, ни того, что он приведет к окончательным решениям везде, вплоть до онтологической проблематики "статусах научных теорий; но, как вскоре выяснится, такие вопросы вовсе не требуется обсуждать, когда намереваешься приступить к массовому производству "добротных", или, в данном контексте, попросту "исправно функционирующих" научных теорий. Такая позиция не удовлетворит философию науки, и даже наверняка "минимализм" подобного рода сочтут хитроумной уловкой, а кто знает, может быть, и определят его как дезертирство, недопустимое дезертирство из той области, где решения необходимы. Пусть так: обремененные всеми этими грехами, займемся нашими умозрительными экспериментами, сознавая скромность их целей. Количество информации можно измерять, а измеримость - это первый шаг вперед. Старую метафору о "тайнописи Природы", которую "расшифровывает" Ученый, Дж. Броновский предложил сделать исходным пунктом информационного анализа научных теорий 1. Сначала надо установить, что информацию от Природы Ученый получает в виде своеобразного закодированного сообщения, причем prima fade не видно, как его можно декодировать, и неизвестно даже, существует ли только один истинный "код". Неизвестно также, что собой представляют элементы этого кода (аналогичные, скажем, таким элементам, как буквы в алфавите или слова в языке). Задача была бы безнадежной для разгадывающего шифр, если бы он располагал только одним информационным сообщением. Однако он может - на непонятном ему языке Природы (языке эмпирических фактов) - задавать ей вопросы, на которые она отвечает (материальным результатом эксперимента). Язык "вопросов" и "ответов" Природы остается непонятным для людей в том смысле, что его невозможно отождествить с тем языком, которым пользуются люди при взаимном общении. Но непонятен он лишь постольку, поскольку н_е_о_к_о_н_ч_а_т_е_л_е_н, ибо никогда не известно, удалось ли нам определить "окончательные" элементы этого языка и "окончательно" установить их значения. Однако чем длиннее информационное сообщение, которое получила наука, записывающая "ответы" Природы, тем больше вероятность того, что обнаруженные в этом сообщении регулярности не являются привходящими, что они внутренне присущи исследуемому миру как выражение его существенных и всеобщих связей. Таким путем мы открываем все новые и новые закономерности в виде повторимых и воспроизводимых соотношений. Располагая "конкурирующими между собой" теориями одного и того же явления или класса явлений и вычислив, какое количество информации содержит каждая из них, мы решились бы избрать ту, которая содержит больше информации. Ведь информация означает степень упорядоченности; мы, следовательно, всегда стремимся обнаружить в Природе м_а_к_с_и_м_у_м порядка. Максимальный порядок, какой мы можем представить себе, выше того, который проявляет Природа: ведь мы не ожидали гейзенберговской неопределенности, неразличимости элементарных частиц, относительности измерений, неаддитивности скоростей (субсветовых) и т.д. Дело, значит, обстоит не так, как если бы мы попросту навязывали Природе известные виды упорядоченности и отыскивали в ней, как думают иные философы, лишь то, что сами же в нее "спроецировали" (поскольку Природа, "отвечая" на "вопросы" экспериментатора, подделывается под нашу "чрезмерно оптимистическую", чересчур уж "упрощающую" склонность к порядку). Между тем Природа, отдавая предпочтение некоторым из "предложенных" ей типов упорядоченности, указывает нам в ходе наших проб и ошибок стратегическое направление дальнейших исследований. Другое дело, что беспрестанно нужны "идеи", "вдохновение", чье-то "придумывание" новых типов порядка для явлений определенного класса, порядка, который "можно было бы предлож