Электронная библиотека
Библиотека .орг.уа

Разделы:
Бизнес литература
Гадание
Детективы. Боевики. Триллеры
Детская литература
Наука. Техника. Медицина
Песни
Приключения
Религия. Оккультизм. Эзотерика
Фантастика. Фэнтези
Философия
Художественная литература
Энциклопедии
Юмор





Поиск по сайту
Художественная литература
   Мемуары
      Кузнецов Б.Г.. Эйнштейн. Жизнь. Смерть. Бессмертие. -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  - 40  - 41  - 42  - 43  - 44  - 45  - 46  - 47  - 48  - 49  - 50  -
51  - 52  - 53  - 54  - 55  - 56  - 57  - 58  - 59  - 60  - 61  - 62  - 63  - 64  - 65  - 66  - 67  -
68  - 69  - 70  -
вероятность определяется уравнением Шредингера. Закономерности, которые определяют не события, а только их вероятность, - это статистические закономерности. Они ограничили в свое время лапласовский детерминизм - представление о том, что координаты и скорости всех частиц в данный момент однозначно определяют состояние Вселенной в каждый последующий момент и все грядущие события ее истории. Статистические зако- 522 номерности термодинамики ограничили лапласовский детерминизм сверху. Теперь он оказался ограниченным снизу: движения частиц не подчиняются динамическим закономерностям, состояние движения частицы в данный момент времени определяет лишь вероятность тех или иных координат либо тех или иных скоростей в последующие моменты. Такая точка зрения вызывала возражения со стороны ряда крупнейших физиков-теоретиков, которых Макс Борн назвал впоследствии "ворчунами". Первая широкая дискуссия развернулась на Сольвеевском конгрессе в 1927 г. Среди "ворчунов" наиболее активным и глубоким критиком квантовой механики (вернее, ее вероятностного понимания) был Эйнштейн. На Сольвеевском конгрессе и позже в печати Эйнштейн доказывал, что соотношение неопределенности не дает полного представления о физической реальности. Нильс Бор, Вернер Гейзенберг, Макс Борн и другие парировали удары, наносимые утверждению о статистических закономерностях как об исходных закономерностях мира. Дискуссия осложнялась попытками философов-позитивистов представить переход от динамической формы детерминизма к статистической его форме в квантовой механике как отказ от какого бы то ни было детерминизма вообще, как признание индетерминизма в природе. Заметим, что идея "волн вероятности" принадлежала в некоторой мере самому Эйнштейну. В своей теории квантов света он но существу соединил волновое и корпускулярное представление о свете. Свет - это волны, обладающие некоторой энергией, причем в единичном объеме пространства содержится определенное количество энергии световых волн; пространство, которое проходит световой луч, характеризуется известной плотностью энергии электромагнитных волн. Но свет - это частицы, фотоны. В корпускулярном представлении пространство, через которое проходит луч, характеризуется средней плотностью фотонов. Значит, средняя плотность фотонов (пропорциональная вероятности встречи с фотоном: чем вероятнее встреча, тем больше фотонов мы встретим) означает - при переходе к волновому представлению - плотность энергии, т.е. интенсивность колебаний электромагнитного поля. Эти колебания, распространяясь в пространстве, образуя электромагнитные волны, опреде- 523 ляют вероятность встречи с фотоном. Подобное представление логически вытекало из учения Эйнштейна о фотонах. В квантовой механике, созданной в 1925-1926 гг., речь первоначально шла об электроне. Вероятность встречи с ним, вероятность его пребывания в данном объеме определяются уже не электромагнитными волнами, а "волнами материи", о которых говорил Луи де Бройль и которые Макс Бори рассматривал как волны вероятности. Ту роль, которую при определении движения электрона играет волновое уравнение Шредингера (с его помощью можно определить вероятность местонахождения электрона), в оптике играет волновое уравнение, позволяющее определить движение фотонов. В этом смысле в эйнштейновской теории фотонов уже содержались основные коллизии квантовой механики. Свет состоит из частиц. С другой стороны, абсолютно достоверные опыты убеждают в том, что свет - это электромагнитные волны. Более того, вывод Эйнштейна об интенсивности электромагнитных волн, пропорциональной плотности фотонов, наталкивает на ту мысль, что интенсивность электромагнитной волны соответствует вероятности нахождения фотона в данной точке, на мысль об электромагнитных волнах как волнах вероятности встречи с фотоном. Эйнштейн не соглашался с представлением о волнах вероятности, т.е. о некоторой закономерности, определяющей лишь вероятность фактов, как о наиболее общей закономерности микромира. Но именно к этому выводу вела и привела в конце концов выдвинутая им теория. Сейчас, ретроспективно оценивая идею фотонов, мы находим в ней еще более радикальный отход от основ классической картины мира. Эйнштейн в отличие от Планка говорил о дискретности энергии электромагнитного поля не только при его излучении и поглощении, но и между этими процессами. Поле по своей природе дискретно ("пиво не только продается пинтовыми бутылками, но и состоит из пинтовых неделимых порций, находясь в бочонке"). Довольно естественным обобщением этой мысли служит представление о том, что все поля дискретны, что мы можем описывать поле, действующее на частицу, с точностью до некоторой далее неделимой величины. Классическая физика исходит из того, что поведение частиц определяется их взаимодействием, иначе го- 524 воря, некоторыми силовыми полями, порождаемыми частицами и воздействующими на них. Если очистить классическую механику от иных воздействующих на частицы сил (например, сил инерции, вызванных не взаимодействием тел, а абсолютным ускорением системы), т.е. приблизить ее к "классическому идеалу", то мы получим Вселенную, в которой взаимодействия частиц определяют все, что в ней происходит. Если эти взаимодействия нельзя определить с неограниченной точностью, то в указанной идеальной картине окажутся как бы маленькие пятна. "Классический идеал" ограничен некоторыми наименьшими значениями энергии, наименьшими силами, определяющими движения частиц. Таким образом, теория фотонов оказалась бомбой замедленного действия, направленной против "классического идеала". Она угрожала этому идеалу только при очень малых "порциях" поля. Но этого было достаточно, чтобы лишить былого абсолютного доверия картину, в которой все определялось с какой угодно точностью, так что даже бесконечно малое изменение состояния частицы можно было объяснить некоторым действием поля. Подобная связь между бесконечно малым изменением состояния движения частицы и значениями напряженности поля - краеугольный камень физики, причем не только физики, основанной на законах Ньютона, но и физики, реформированной Эйнштейном. Эйнштейн считал взаимодействие частиц ответственным за все, что происходит в природе. Указанная связь выражается в уравнениях, связывающих переменные поля с бесконечно малыми изменениями состояния движения частицы. Такие уравнения называются дифференциальными уравнениями. Примером их служит уравнение движения частицы в силовом поле. Бесконечно малое изменение скорости частицы определяется напряженностью силового поля. До появления квантовых концепций думали, что, какое бы малое изменение состояния движения частицы (например, ее ускорения в силовом поле) мы ни взяли, все равно закон, связывающий поведение частицы с действием других частиц, т.е. с полем, будет действовать неуклонно. Оказывается, порции энергии поля не могут быть меньше определенной минимальной величины и увеличиваться она может только определенными конеч- 525 ными добавками. Раньше знали о дискретности материи, об атомах - наименьших частицах вещества. Теперь выяснилось, что взаимодействие тел, с одной стороны, и изменения их состояния движения, с другой, дискретны и теряют свою однозначную связь, когда речь идет об очень малых величинах, меньших, чем предельные минимальные значения переменных, выражающих энергию поля и изменения состояния движения. Сравним две картины. Одна из них написана красками, смешанными на палитре. Краски, положенные на холст, дают непрерывный переход от одного цвета к другому. Другая картина написана чистыми, не смешанными красками и состоит из отдельных небольших пятен определенных цветов. Так писали некоторые импрессионисты; они думали, что смешение красок не на палитре, а в глазу, дает более точное изображение натуры. Классическая картина мира соответствует пейзажу, написанному в старой манере, квантовая - соответствует указанному только что множеству отдельных пятен без непрерывных переходов. Какая картина отображает действительность? В доквантовой физике ответ был различным в зависимости от того, шла ли речь о веществе или же о движении. Вещество признавалось дискретным, и картина вещества в конце концов должна была строиться из отдельных мазков, соответствующих атомам. Но картина движения была непрерывной, закон движения связывал бесконечно малые приращения скорости движения с определенными значениями сил. Квантовая механика на основе множества непререкаемых фактов пришла к дискретной картине поля и движения. Все эти выводы можно было сделать уже из самой идеи фотонов. Но в 1917 г. Эйнштейн сделал еще один шаг по направлению к статистико-вероятностпой концепции движения частиц. Он вывел из представления о фотонах и модели Бора законы излучения, найденные когда-то Планком. Законы, управляющие излучением атомов, носят статистический характер, они определяют каждый раз вероятность излучения. Излучение волн и излучение частиц (оно подчинено каждый раз воле случая) - вещи, по-видимому, несовместимые, и именно это Эйнштейн рассматривал как уязвимое место своей теории излучения. 526 "Слабость этой теории, - писал он, - заключается в невозможности связать ее с волновым представлением. Далее, эта теория отдает на волю случая время и направление элементарных процессов..." [3] 3 Physicalische Zeitsclirift, 1917, 18. 127. Действительно, элементарный процесс, т.е. отдельный акт излучения фотона при переходе электрона с одной боровской орбиты на другую, подчинен случаю, и только при большом числе излученных фотонов результат будет соответствовать вероятности, которая определена статистическим законом. Указанные обстоятельства - отсутствие связи с волновым представлением и случайный характер излучения - были в глазах Эйнштейна симптомами большой угрозы, нависшей над самим существованием физики. Бора они не смущали. Он знал, что свет ведет себя как частицы в явлениях фотоэффекта, например в фотоэлементах, где фотоны срывают электроны с поверхности металлической пластинки. Бор знал также, что свет ведет себя как волны, проходя, например, через узкие отверстия или решетки, где имеет место дифракция - изменение направления волн, огибающих края отверстий. Отсюда - неизбежность нового взгляда на свет, как бы далеко ни уводил этот взгляд. Бор вспоминает о своей первой встрече с Эйнштейном и первом споре о характере законов, управляющих поведением фотонов. "Когда в 1920 г. при моем посещении Берлина я в первый раз встретился с Эйнштейном - что было для меня великим событием, - эти фундаментальные вопросы и были темой наших разговоров. Обсуждения, к которым я потом часто мысленно возвращался, добавили к моему восхищению Эйнштейном еще и глубокое впечатление от его непредвзятой научной позиции. Его пристрастие к таким красочным выражениям, как "призрачные поля, управляющие фотонами", не означало, конечно, что он склонен к мистицизму, но свидетельствовало о глубоком юморе, скрытом в его проницательных замечаниях. И все-таки между нами оставалось некоторое расхождение в отношении нашей точки зрения и наших видов на будущее. При его мастерстве согласовывать, казалось бы, противоречащие друг другу факты, не отказываясь от 527 непрерывности и причинности, Эйнштейн, быть может, меньше, чем кто-либо другой, был склонен отбросить эти идеалы, - меньше, чем кто-либо, кому такой отказ представлялся единственной возможностью согласовать многообразный материал из области атомных явлений, накапливавшийся день ото дня при исследовании этой новой отрасли знаний" [4]. 4 Бор Н. Дискуссии с Эйнштейном о проблемах теории иозпа ция. - В сб.: Albert Einstein: Philosopher Scientist. Evanston, 1949. Русск. пер. в кн.: Вор Н. Избр. науч. труды, т. П. М. 1971, с. 403. 528 В 1961 г. Бор подробнее рассказал о первых спорах с Эйнштейном. Когда Эйнштейн поделился своими сом нениями насчет необходимости расстаться с идеалами не прерывности и причинности, Бор ответил: "Чего вы, собственно, хотите достичь? Вы - человек, который сам ввел в науку понятие о свете как о частицах! Если вас так беспокоит ситуация, сложившаяся в физике, когда природу света можно толковать двояко, ну что же, обратитесь к правительству Германии с просьбой запретить пользоваться фотоэлементами, если вы считаете, что свет - это волны, или запретить употреблять дифракционные решетки, если свет - частицы". "Аргументация моя, - прибавляет Бор, - как видите, была не слишком убедительна и строга. Впрочем, для того времени это достаточно характерно..." В наши дни становится ясным, что позиция Эйнштейна выражала отнюдь не простую приверженность к старым позициям физики, а скорее догадку о неокончательном характере новых позиций, о возможности еще более общих и еще более точных исходных принципов физики. Бор продолжает свои воспоминания: "Эйнштейн с горечью заметил: - Видите, как получается: приходит ко мне такой человек, как вы, встречаются, казалось бы, два единомышленника, а мы никак не можем найти общего языка. Может быть, стоило бы нам, физикам, договориться о каких-либо общих основаниях, о чем-то общем, что мы твердо будем считать положительным, и уже затем переходить к дискуссиям? И снова я запальчиво возражал: - Нет, никогда! Я счел бы величайшим предательством со своей стороны, если бы, начиная работу в совершенно новой области знаний, позволил себе прийти к какому-то предвзятому соглашению" [5]. 5 Наука и жизнь, 1961, № 8, с. 78. Здесь пути разошлись. Эйнштейн продолжал думать об общих основаниях физики, из которых вытекали бы частные проблемы. Он искал эти основания по-прежнему в классическом идеале науки. Бора влекла романтика новых закономерностей бытия, не укладывающихся с абсолютной точностью в рамки классической гармонии. В реплике Эйнштейна "Если все это правильно, то здесь - конец физики" есть одна мысль, может быть, самая поразительная. Эйнштейн думает, что точка зрения Бора - конец той физики, которая до сих пор существовала, по не исключает точки зрения Бора, считает ее в принципе допустимой ("если все это правильно..."). В этом выражается смелость мысли, дошедшей до сомнений в стержневой идее собственного творчества и в стержневой идее существовавшей до сих пор науки. В этом выражается понимание допустимости, возможности и, более того, красоты ("высшей музыкальности") теории, антипатичной мыслителю, угрожающей его научному идеалу. В последнем счете в такой предельной толерантности выражается исчезновение всего личного вплоть до личного идеала науки перед лицом объективного, внеличного. Эйнштейн был предан классическому идеалу - картине мира, в которой взаимодействия частиц абсолютно точным образом объясняют все происходящее в мире. Но еще больше Эйнштейн был предан объективной истине. Перефразируя Аристотеля, он мог бы сказать: "Ньютон мне дорог, но истина дороже". Разумеется, "Ньютон" был бы в этом случае не символом конкретной ньютоновой механики, а символом классической гармонии, "механики типа ньютоновой"; можно было бы вместо имени Ньютона поставить имя Декарта или Спинозы. Эйнштейн пользовался именем Ньютона как символом классического идеала науки. Он говорил о "программе Ньютона" (все определяется взаимодействием тел) и о "программе Максвелла" (движение тела определено в каждой точке полем, действующим на это тело) как о стержневых программах физики. Но он может уплатить и эту цену за объективное знание. И здесь вспоминаются приведенные в эпиграфе главы "Броуновское движение" 529 слова Роберта Майера (такие реминисценции неизбежны, потому что Эйнштейн - это итог и синтез всего бессмертного, живого, антидогматического, что было в истории науки): "...Природа в ее простой истине является более великой и прекрасной, чем любое создание человеческих рук, чем все иллюзии сотворенного духа". Вспомним многозначительную фразу Эйнштейна в письме к Соловину: "...Нельзя игнорировать, что тела, с помощью которых мы измеряем предметы, воздействуют на эти предметы", а также вывод: "Если не грешишь против разума, нельзя вообще ни к чему прийти". Сопоставив ее с репликой по поводу теории Бора, можно прийти к заключению: Эйнштейн не исключал ограничения "классического идеала". Если при этом "исчезает физика", то слово "физика" означает здесь не возможность объективной картины мира вообще, а физику в духе "программы Ньютона" и "программы Максвелла". Отношение к квантово-статистическим идеям у Эйнштейна было крайне сложным, но в целом оно укладывалось в реплику, о которой вспоминал Бор. Он видел связь этих идей со своими работами, видел в них угрозу физике, ждал разрешения этого кризиса от дальнейших исследований и надеялся найти за кулисами этих законов динамические законы, определяющие не вероятности процессов, а самые процессы так, как это было в классической термодинамике. Теория до Бройля могла внушить надежду на подобное нестатистическое объяснение. Сейчас ретроспективно мы видим в электромагнитных волнах нечто напоминающее волны вероятности. В первой четверти века, напротив, хотели свести статистические закономерности движения частиц к динамическим - хотя бы к существованию волн, управляющих движением частиц. Аналогия между волнами де Бройля и электромагнитными волнами способствовала восприятию новой теории и вместе с тем наталкивала мысль на признание реальности "волн материи". Фотоны как-то связаны с электромагнитными волнами, как именно - об этом трудно было что-либо сказать. Но предполагали, что электромагнитные волны представляют собой изменения напряженности "реального" поля. Волны де Бройля, по-видимому, тоже должны считаться распространяющимися колебаниями некоторого "реального" поля. Но эти надежды и соответствующие гипотезы быстро уступили место идее "волн вероятности". 530 Отношение Эйнштейна к этой идее было, как уже сказано, очень сложным. Позитивистские выводы, представление об индетерминизме он полностью отбрасывал, и с этой стороны его критические аргументы были неопровержимы. Собственно физические соображения и мысленные эксперименты, противопоставленные физическим построениям Гейзенберга, Бора, Борна и других сторонников "волн вероятности", встретили с их стороны веские контраргументы. Общая мысль, вернее интуитивная догадка о теории, более общей и точной, чем квантовая механика, только сейчас может быть воплощена в сравнительно конкретные формы и получить правильную оценку. На этой стороне дела мы и остановимся. В 1932 г. в Берлине Эйнштейн встретил Филиппа Франка, который защищал официальную статистическую версию квантовой механики. Франк рассказывает о споре с Эйнштейном. "В физике, - говорил Эйнштейн, - возникла новая мода. С помощью виртуозно сформулированных мысленных экспериментов доказывают, что некоторые физические величины не могут быть измерены или, точнее, что их поведение определено законами природы таким образом, что они ускользают от всяких попыток измерения. Отсюда заключают, что было бы бессмысленно сохранять эти величины в физическом лексиконе. Такое сохранение было бы чистой метафизикой" [6]. 6 Frank, 216. После того как Эйнштейн высказал свое отрицательное отношение к этой концепции, Франк попробовал отождествить ее с исходной идеей теории относительности. Последняя, анализируя, например, понятие "абсолютная одновременность", отказывает ему в праве на существование на том основании, что реальные и мысленные эксперименты демонстрируют невозможность синхронизировать события, рассматриваемые в различных, движущихся одна относительно другой системах отсчета. Значит, заключал Франк, понятия, отвергнутые теорией относительности, отвергнуты потому, что они ненаблюдаемы. Он так и сказал Эйнштейну: "Но ведь мода, о которой вы говорите, изобретена вами же в 1905 г.". 531 "Хорошая шутка не должна слишком часто повторяться", - ответил Эйнштейн. Далее он разъяснил, что теория относительности описывает объективные процессы, реальную материальную субстанцию, устанавливает связь между различными способами описания одной и той же реальности, не имеет ничего общего с позитивизмом я далека от появившейся сейчас "моды". Позитивистские выводы, сделанн

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  - 40  - 41  - 42  - 43  - 44  - 45  - 46  - 47  - 48  - 49  - 50  -
51  - 52  - 53  - 54  - 55  - 56  - 57  - 58  - 59  - 60  - 61  - 62  - 63  - 64  - 65  - 66  - 67  -
68  - 69  - 70  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору Rambler's Top100 Яндекс цитирования