Электронная библиотека
Библиотека .орг.уа

Разделы:
Бизнес литература
Гадание
Детективы. Боевики. Триллеры
Детская литература
Наука. Техника. Медицина
Песни
Приключения
Религия. Оккультизм. Эзотерика
Фантастика. Фэнтези
Философия
Художественная литература
Энциклопедии
Юмор





Поиск по сайту
Художественная литература
   Мемуары
      Кузнецов Б.Г.. Эйнштейн. Жизнь. Смерть. Бессмертие. -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  - 40  - 41  - 42  - 43  - 44  - 45  - 46  - 47  - 48  - 49  - 50  -
51  - 52  - 53  - 54  - 55  - 56  - 57  - 58  - 59  - 60  - 61  - 62  - 63  - 64  - 65  - 66  - 67  -
68  - 69  - 70  -
л им достоверность. Судьба и исторический смысл единой теории поля, которую Эйнштейн разрабатывал в течение тридцати лет, напоминает судьбу и смысл его критики квантовой механики. В отношении квантовой механики позиция Эйнштейна была чисто негативной, он не противопоставлял ей иную концепцию, не разрабатывал какой-либо нестатистической теории микромира. Напротив, единая теория поля была изложена в позитивной форме. Но как раз позитивные и конкретные контуры этой теории, по-видимому, не войдут в единую теорию поля. Мы можем поставить в кавычки эпитет "ошибочная" применительно к единой теории Эйнштейна, потому что отнюдь не ошибочным был ее общий смысл - представление о существовании тех или иных закономерностей, определяющих не только структуру некоторого поля, но и структуру всех полей, представление о едином мире, модификациями которого являются известные нам поля. В 1959 г. Гейзенберг написал статью "Замечания к эйнштейнов- 359 скому наброску единой теории поля" [7]. Здесь в качестве первой причины неудачи эйнштейновской попытки указывается быстрое расширение сведений о новых частицах и полях. Действительно, в тридцатые - пятидесятые годы были периоды, когда чуть ли не каждый очередной номер физического журнала приносил весть о новом типе элементарных частиц. Каждая частица ассоциировалась с некоторым полем, частицу рассматривали в качестве агента, переносящего взаимодействие других частиц, подобно тому как фотон переносит электромагнитное взаимодействие электронов и других электрически заряженных частиц. Трудно было в этом потоке новых фактов найти твердую почву для единой теории поля. 7 Эйнштейн и развитие физико-математической мысли. Сб. статей. М., 1962, с. 63-69. "Эта великолепная в своей основе попытка, - пишет Гейзенберг, - сначала как будто потерпела крах. В то самое время, когда Эйнштейн занимался проблемой единой теории поля, непрерывно открывали новые элементарные частицы, а с ними - сопоставленные им новые поля. Вследствие этого для проведения эйнштейновской программы еще не существовало твердой эмпирической основы, и попытка Эйнштейна не привела к каким-либо убедительным результатам". Но эта трудность построения единой теории поля приводила ко все большему накоплению аргументов в пользу программы Эйнштейна. Открытия тридцатых - семидесятых годов включали в картину мира частицы, легко превращающиеся в другие частицы и соответственно поля, переходящие в иные поля. Единая теория поля вырастает сейчас из квантовых представлений, переход одного поля в другое поле - это переход кванта одного поля в квант другого поля, в элементарную частицу другого типа. Мы можем допустить, что мысль о "заквантовом" мире ультрарелятивистских эффектов и единая теория ноля сольются в некоторую целостную концепцию трансмутаций элементарных частиц как основных процессов мироздания. Такой концепции еще нет. Мы можем говорить только о принципиальной возможности перехода от картины мира, в которой основным понятием служит движение тождественной себе частицы в гравитационном, электромагнитном и т.д. полях, к картине мира, 360 в которой исходным физическим образом является превращение частицы одного типа в частицу другого типа, связанное своеобразной дополнительностью с непрерывным движением тождественной себе частицы, с непрерывной мировой линией. Эйнштейн стремился к завершению своей теории относительности. Но, с его точки зрения, завершение теории может иметь только один смысл: мы находим некоторые более общие исходные идеи, понятия и закономерности, которые позволяют нам логически перейти к данной теории, вывести ее из другой, более общей теории. Такой характер носило завершение специальной теории относительности; оно было связано с генезисом общей теории относительности, из которой специальная теория может быть выведена как частный случай. Таким же может быть и завершение общей теории относительности, т.е. теории тяготения: в единой теории поля должны быть указаны условия, при которых единое поле принимает форму гравитационного поля и подчиняется соотношениям общей теории относительности. В каждой теории мы встречаем предельные понятия и величины, которые в рамках этой теории не раскрывают своей природы, принимаются как данные и могут получить обоснование, быть выведены из других только в более общей теории. Для небесной механики как теории движения звезд, планет и других небесных тел исходными, заданными, необъяененными остаются массы небесных тел и исходные расстояния. Эти величины могут найти объяснение в космогонии, оперирующей движениями и превращениями молекул, атомов, элементарных частиц. В атомной физике заданы массы и заряды элементарных частиц, которые ждут объяснения и выведения из более общих закономерностей единой теории элементарных частиц. Почему исходные расстояния между небесными телами таковы, а не иные? Если выразить их в километрах или других произвольных единицах, вопрос несколько затушевывается, число, измеряющее расстояние между двумя небесными телами, может казаться произвольным, зависящим от взятых единиц длины - сантиметров, километров, световых лет. Но если взять какую-то естественную меру, например радиус Солнечной системы, и выразить расстояния между планетами с помощью этой меры, то произвол должен быть исключен, отношение ра- 361 диуса орбиты Нептуна к радиусу орбиты Марса должно получить причинное объяснение, должно быть выведено из теории образования Солнечной системы. Аналогичным образом, если выразить массы частиц не в граммах, а в их отношении к массе электрона, принятой за единицу, то эти массы, т.е. константы атомной и ядерной физики, явным образом требуют выведения из более общих закономерностей, из единой теории элементарных частиц, из картины образования частиц, которая должна дать отношения масс частиц различных типов. Для Эйнштейна исключение из физики произвольных констант, объяснение их, выведение предельных для данной теории величин из более общей теории было стержневой тенденцией научного творчества. Именно такое исключение произвольных констант выявляет единство мироздания и его познаваемость. Нам уже известно, что в своей автобиографии 1949 г. Эйнштейн выдвинул в качестве интуитивной догадки утверждение, что в идеальной картине мира не может быть произвольных постоянных. Теперь на этом следует остановиться подробней. Скорость света, выраженная в сантиметрах, деленных на секунды, связана с этими произвольными единицами. Мы можем, по словам Эйнштейна, заменить секунду временем, в течение которого свет проходит единицу длины, а в качестве такой единицы взять вместо сантиметра, например, радиус электрона. Можно заменить грамм в качестве единицы массы массой электрона или другой частицы. Вообще можно полностью исключить из физики постоянные, выраженные в сантиметрах, граммах и секундах, целиком и полностью заменив их "естественными" единицами. "Если представить себе это выполненным, то в основные уравнения физики будут входить только лишь "безразмерные" постоянные. Относительно этих последних мне бы хотелось высказать одно предложение, которое нельзя обосновать пока ни на чем другом, кроме веры в простоту и понятность природы. Предложение это следующее: таких произвольных постоянных не существует. Иначе говоря, природа устроена так, что ее законы в большей мере определяются уже чисто логическими требованиями настолько, что в выражения этих законов входят только постоянные, допускающие теоретическое 362 определение (т.е. такие постоянные, что их численные значения нельзя менять, не разрушая теории)" [8]. Итак, по мнению Эйнштейна, каждая безразмерная константа - отношение некоторой скорости к другой скорости, одной массы к другой массе (например, массы некоторой частицы к массе электрона), одной длины (длины волны или радиуса какой-то частицы или радиуса Вселенной) к другой длине (например, к радиусу электрона) - всегда может найти объяснение в какой-то теории, всегда в идеале можно ответить на вопрос "почему" в отношении такой константы, причем иная теория дает иное значение константы. Все это вытекает из "веры в простоту и понятность природы". Мы достаточно знакомы теперь с общими идеями Эйнштейна, чтобы понять смысл этих слов. Познание внешнего мира - это познание царящей в нем закономерности, причинной связи, охватывающей и объединяющей мир. Эрнст Штраус, ассистент Эйнштейна в Принстоне в 1944-1948 гг., приводит в своих воспоминаниях очень важное замечание Эйнштейна. "Что меня, собственно, интересует, - говорил Эйнштейн, - это следующее: мог ли бог сотворить мир другим, оставляет ли какую-то свободу требование логической простоты?" [9]. 8 Эйнштейн, 4, 281. 9 Helle Zeit, 72. Что "бог" у Эйнштейна есть псевдоним рациональной связи процессов природы, - это нам уже известно. Что эта связь выражается в логической простоте, в наименьшем числе независимых постулатов, в естественности теории, отображающей мир с максимальной адекватностью, - это тоже известно. Вопрос состоит в том, приводит ли критерий логической простоты к однозначной картине мира? Могут ли существовать две в равной степени логически простые схемы, физически отличающиеся одна от другой? По-видимому, Эйнштейн склонялся к тому, что "бог не мог составить мир другим", что требование логической простоты определяет физическую картину мира однозначным образом. Приближаясь к объективной истине и приобретая все большую логическую простоту (за счет исключения эмпирических постоянных, не связанных логическим выведением и соответственно каузальной связью с другими постоянными), паука переходит ко все более точному описанию действительности. Сменяющие друг друга картины мира образуют сходящийся ряд. 363 Таким образом, когда Эйнштейн говорит о логических требованиях, речь идет о реальной объективной связи между законами природы. Каждый из них связан с другими, единая цепь причин - следствий охватывает космос и микромир. Именно благодаря такой связи можно логически вывести один закон из другого, причем в единую цепь входят количественные законы природы и константы. Феноменологические константы - радиусы планетных орбит, массы частиц и т.д. - не удовлетворяют критериям научной теории, выдвинутым Эйнштейном. В картине мира нет ничего чисто феноменологического, так же как ничего чисто априорного. Причинное объяснение может задержаться у границ данной теории, но оно не может остановиться, оно рано или поздно перешагнет эти границы. Когда-то Кеплер, один из самых гениальных провозвестников каузального мышления нового времени, задал вопрос: "Почему они такие, а не иные", имея в виду количественные соотношения мироздания - расстояния между планетами Солнечной системы. Ответа на это нельзя было получить, и Кеплер погрузился в мистику чисел. Каузальное мышление, характерное для науки нового времени, достигло своей кульминации в творчестве Эйнштейна. Но и он не мог найти конкретного причинного объяснения всех физических постоянных, не мог построить теории, в которой все константы вытекают из физических условий. Исходные соотношения теории относительности остаются феноменологическими, пока они не выведены из более общих свойств движущейся материи. Такими свойствами могут быть ее дискретность, ее микроскопическая структура и количественные соотношения микромира, т.е. данные, которыми оперирует квантовая физика. Теория относительности рассматривает в качестве исходных соотношений сокращение движущихся масштабов и замедление времени в движущихся системах. С точки зрения квантовой теории масштабы и часы - это очень сложные тела. "Они построены, - пишет Гейзенберг, - вообще говоря, из многих элементарных частиц, на них сложным образом воздействуют различные силовые поля и поэтому непонятно, почему именно их поведение должно описываться особенно простым законом" [10]. 304 Эйнштейн, как мы знаем, и сам понимал, что исходные соотношения теории относительности, рисующие поведение масштабов и часов, должны быть выведены из каких-то более общих соотношений, записанных в виде уравнений. В этой книге уже упоминалось о такой чрезвычайно характерной, раскрывающей весьма существенную сторону неклассической физики оценке теории относительности ее творцом. В своей автобиографии Эйнштейн пишет: "Сделаем теперь критическое замечание о теории в том виде, как она охарактеризована выше. Можно заметить, что теория вводит (помимо четырехмерного пространства) два рода физических предметов, а именно: 1) масштабы и часы, 2) все остальное, например электро-магнитное поле, материальную точку и т.д. Это в известном смысле не логично; собственно говоря, теорию масштабов и часов следовало бы выводить из решений основных уравнений (учитывая, что эти предметы имеют атомную структуру и движутся), а не считать ее независимой от них" [11]. 10 Гейзенберг В. Замечания к эйнштейновскому наброску единой теории поля. - В сб.: Эйнштейн и развитие физико-математической мысли. М., 1962, с. 65. 11 Эйнштейн, 4, 280, Разумеется, "теория масштабов и часов" или "поведение масштабов и часов" - фигуральные выражения. Буквальное, конкретное понимание подобных выражений существовало издавна. Быть может, во II в. до нашей эры некоторые жители Сиракуз всерьез думали, что во дворе одного из домов их родного города лежит рычаг, при помощи которого Архимед перевернет Землю, как только получит в свое распоряжение точку опоры. Быть может, иные, не веря в существование такого рычага, уличали Архимеда во лжи. Примерно в такой же мере наивно думать, что "поведение масштабов и часов" имеет смысл лишь при наличии линеек, рулеток, хронометров и пользующихся ими наблюдателей. Речь идет о вещах, существовавших за миллиарды лет до любых наблюдателей и принадлежащей им аппаратуры. Мы уже имели случай заметить, что Эйнштейн описал объективные про- 365 цессы с помощью "масштабов" и "часов", т.е. жестких стержней и периодически повторяющихся движений, а также с помощью "наблюдателей", которыми могут быть приборы, регистрирующие показания часов (число оборотов или число отрезков, пройденных телом после некоторого момента) и число уложенных между двумя точками твердых стержней. Устранить подобное понимание термина "поведение масштабов и часов" очень легко. Что действительно трудно (и что не сделано и не могло быть сделано Эйнштейном), - это указать микроскопические процессы, объясняющие соотношения между пространственными и временными измерениями ("поведение масштабов и часов") в движущихся одна относительно другой системах. Мы не можем и сейчас однозначным и достоверным образом показать, как микроскопическая структура вещества (быть может, атомистическая структура пространства-времени) приводит к соотношениям теории относительности Эйнштейна. Этим соотношениям подчинены все процессы в мире галактик, планет, молекул и атомов. Подчинено ли им поведение элементарных частиц в сколь угодно малых пространственно-временных областях? Мы этого пока не знаем. Если подчинено, то объяснение поведения масштабов и часов их атомистической структурой недостижимо: мы не можем отсылать "от Понтия к Пилату" и, объясняя природу соотношений теории относительности, апеллировать к процессам, подчиненным этим же соотношениям. Однако можно предположить, что в очень малых, ультрамикроскопических областях имеют место соотношения, из которых вытекают соотношения теории относительности при переходе к большим областям пространства, к большим интервалам времени. Переход к принципиально иным соотношениям и понятиям встретился нам при знакомстве с термодинамическими работами Эйнштейна и с классической термодинамикой XIX в. Это был переход от микроскопических движений отдельных молекул к состояниям макроскопических тел. Теперь мы имеем подчиненные соотношениям Эйнштейна движения. Быть может, задача состоит в том, чтобы перейти к этим движениям от ультра микроскопических состояний. Такая точка зрения в известной мере восходит к идеям Эйнштейна. Вспомним, что из теории относительности выросла новая, релятивистская теория 366 электрона, предполагающая превращение электронно-позитронных пар в фотоны и порождение электронно-позитронных пар из фотонов. Вспомним также то, что было сказано в связи с изложением квантовой механики и позиции Эйнштейна: за тридцать лет, прошедших после указанных открытий, трансмутации элементарных частиц, превращения частиц одного типа в частицы другого типа, объяснили множество фактов. За это время появилось и развилось представление об излучении частицей частиц иного типа и их последующем поглощении. Мы знаем, что частица, которая макроскопически обладает непрерывным бытием, на самом деле (в ультрамикроскопическом аспекте) превращается в иные частицы и вновь возникает из них. Поэтому кажется естественным предположение о трансмутациях как об основе прерывности, дискретности атомистической структуры пространства-времени. Частица определенного типа переходит из одной элементарной, далее неделимой пространственной клетки в соседнюю в течение элементарного интервала, превращаясь в частицу иного типа и вновь возникая уже в другой клетке. Такое предположение о неотделимости элементарных трансмутаций от элементарных переходов дает наглядное представление о дискретности пространства-времени. Если частица исчезает в данной клетке и возрождается в соседней, никакой сигнал не может быть отправлен на расстояние, меньшее элементарного, и в течение времени, меньшего элементарного. Два события - пребывание частицы в точке х в момент времени t и пребывание частицы в точке х в момент времени t' - не могут быть разделены расстоянием, меньшим элементарного расстояния, и временем, меньшим элементарного интервала. Предположение о дискретности пространства-времени кажется естественным хотя бы потому, что оно высказывалось на каждом этапе развития науки. Уже Эпикур - об этом речь пойдет в главе "Эйнштейн и Аристотель" - говорил о "кинемах", о микроскопических перемещениях атомов в течение "мгновений, постижимых лишь мыслью", с одной и той же скоростью. Тела, состоящие из атомов, могут двигаться с меньшей скоростью; они даже могут быть неподвижными, если число "кинем", направленных в одну сторону, примерно равно числу "кинем", направленных в обратную сторону. 367 Мир современных аналогов эпикуровских "кинем", мир элементарных трансмутаций-смещений может служить иллюстрацией, - разумеется, совершенно условной - тех закономерностей, которые Эйнштейн искал за кулисами закономерностей квантовой механики. Движение тождественной себе частицы подчинено соотношениям квантовой механики Рассматривая результат большего числа элементарных трансмутаций-переходов, игнорируя отдельные переходы, принимая во внимание макроскопическое движение частицы, мы не можем выйти за пределы этих соотношений: зная положение частицы в данный момент, мы можем узнать лишь вероятность ее скорости. Частица движется в определенную сторону, ее макроскопическая траектория имеет определенное направление, если вероятность элементарных сдвигов в эту сторону больше, чем вероятность элементарных сдвигов в другую сторону, В атом случае частица после большого числа переходов окажется прошедшей свой макроскопический путь, на котором определенное положение несовместимо с определенной скоростью. Здесь все подчинено статистическим закономерностям квантовой механики. Но это еще ничего не говорит о закономерностях, стоящих за кулисами квантовой механики. Речь идет отнюдь не о каких-то "скрытых параметрах", не о каких-то неизвестных процессах, позволяющих точно определить в одном эксперименте положение и скорость движущейся частицы, найти закономерности движения этой частицы, определяющие достоверным образом не вероятность ее пребывания в данной точке, а самое пребывание. Подобных "скрытых параметров" нет, движение частицы (частицы, тождественной все время самой себе, частицы, движущейся, не исчезая и не возникая) определяется статистическими законами квантовой механики. Но такое движение представляет собой, быть может, только статистический результат большого числа элементарных процессов, к которым неприменимо понятие определенных или неопределенных динамич

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  - 22  - 23  - 24  - 25  - 26  - 27  - 28  - 29  - 30  - 31  - 32  - 33  -
34  - 35  - 36  - 37  - 38  - 39  - 40  - 41  - 42  - 43  - 44  - 45  - 46  - 47  - 48  - 49  - 50  -
51  - 52  - 53  - 54  - 55  - 56  - 57  - 58  - 59  - 60  - 61  - 62  - 63  - 64  - 65  - 66  - 67  -
68  - 69  - 70  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору Rambler's Top100 Яндекс цитирования