Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Наука. Техника. Медицина
   Психология
      Ганзен В.А.. Системные описания в психологии -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  -
ельной функции натурального аргумента # (табл. 2). Как известно, в музыке используются звуки, находящиеся между собой в определенных звуко-высотных отношениях. Выбор их основан на явлениях консонанса и диссонанса. Совокупность музыкальных звуков образует систему, в которой имеется единство противоположностей, а также консонансов и диссонансов, благозвучий и неблагозвучий при доминировании первых (ибо в противном случае система бы "развалилась"). Существует иерархия консонансов и диссонансов (абсолютный консонанс, совершенный консонанс и т. д.). Абсолютным консонансом характеризуется созвучие, образованное из звуков с равными частотами. Как совершенный консонанс воспринимается созвучие из двух звуков, отличающихся по частоте в два раза. Кратное отношение частот звуков называются музыкальными интервалами. Интервал с отношением частот 2 : 1 именуется октавой. Именно октава является основой первичного квантования непрерывной частотной шкалы звуков. Если считать, что человек воспринимает звуки в диапазоне 16 - 16 000 Гц, то легко подсчитать, что здесь укладывается приблизительно 10 октав. Таким образом, совершенный консонанс приводит к шкале октав или к шкале удвоения. Все октавы подобны друг другу, каждая обладает относительной целостностью, поэтому дальнейшее рассмотрение ограничим пределами одной октавы. Шкала удвоения является частным случаем показательной функции, у которой аргумент принимает целочисленные значения. Октава делится на двенадцать равных интервалов, именуемых полутонами. Такой строй называется темперированным. Очевидно, что внутри октавы в этом случае звуки располагаются по показательному закону #, где y - относительная частота звука (величина интервала), k - целое число, изменяющееся в пределах от 0 до 12. На практике величины интервалов несколько отличаются (по разным причинам) от расчетных, но эти различия незначительны, они не превосходят половины процента. Примерно такую степень отклонения величины интервала фиксируют люди с абсолютным звуко-высотным слухом. Точность музыкальной шкалы значительно выше точности психологических и психофизических шкал. Методической структуре музыкальной шкалы соответствует метрическая структура восприятия музыки. Можно утверждать, что по крайней мере у людей с развитым музыкальным слухом структура слухового восприятия имеет регулярную основу. --------------Картинка стр. 106------ Таблица 2. Метрические отношения музыкальной шкалы ---------------------------- В табл. 2 приведены абсолютные частоты звуковой октавы для фортепиано, соответствующие им величины реальных интервалов, расчетные величины интервалов (значения функции y), аппроксимация этих значений целочисленными отношениями. Для сравнения приведена нетемперированная шкала музыкальных интервалов, которые вычисляются также как значения показательной функции, но с меньшим основанием, чем у функции y [31]. V, 1. 4. Использование средних. Еще один прием разбиения непрерывного целого на компоненты состоит в использовании семейств уравнений средних величин. По-видимому, впервые полную систему из десяти средних дал Эратосфен (см. [18]). К. Джини рассматривает систему из 31 средней [46]. Если ввести ограничение a>b>c, то из 31 средней различных окажется только 10. Именно на эти средние указывает Эратосфен. Первые четыре средних порождают числовые ряды. С помощью двух средних (арифметического и гармонического) непрерывный интервал октавы разбивается и получается основной октавный тетраход 1/1 - 4/3 - 3/2 - 2/1 или в целых числах 6 - 8 - 9 -12. V. 1. 5. Метрические структуры. Исходным для этих структур являются метрические отношения, простейшим видом которых выступает бинарное отношение равенства. Оно обладает свойством рефлексивности, симметричности и транзитивности и является частным случаем отношения эквивалентности, так как базируется на количественном признаке. Равенство противостоит сходству так же как количество противостоит качеству. Равенство - количественное, метрическое отношение, сходство - качественное, топологическое, основанное на понятии близости. Отношению равенства (в количественном измерении) противостоит отношение неравенства, подобно тому как отношению сходства противостоит отношение различия. Для определения отношений равенства или неравенства не требуется процедуры измерения, для этого достаточно сравнения. В физическом мире существует множество процессов, приводящих к установлению равенства между величинами. При равенстве сил, действующих на физическое тело, оно находится в состоянии покоя или равномерного прямолинейного движения. В поле тяжести оказываются равными уровни жидкости в сообщающихся сосудах, моменты сил, действующих на твердое тело, имеющее ось опоры, и т. д. Благодаря высокой различительной чувствительности органов чувств человека возможно с большой степенью точности фиксировать равенство по величине самых различных стимулов. Этот факт широко используется в экспериментальной психологии. Многие психофизические и психологические процедуры измерения имеют в соей основе операцию установления равенства по величине двух стимулов. На этом же базируется и широкое распространение шкал интервалов и отношений. Среди элементарных функций в психологии наиболее часто используются показательные и логарифмические, которыми описываются важнейшие законы психофизики, законы научения и забывания, зависимость времени дизъюнктивной реакции от числа альтернатив и многие другие эмпирические зависимости. Эти функции взаимообратны, образуют в определенном смысле полное семейство функций и упорядочены по величинам оснований, что наводит на мысль об использовании указанного семейства в качестве базиса описаний психических явлений. Этот вопрос будет рассмотрен в подразделе V. 3, а в следующем подразделе описывается пример показательных функций для моделирования памяти человека. V. 2. МОДЕЛЬ ПАРЦИАЛЬНОГО ХРАНИЛИЩА ПАМЯТИ ЧЕЛОВЕКА V. 2. 1. Теоретические предпосылки модели. Проблема построения полноценных описаний хранилища памяти человека как в терминах макро (объемных) характеристик, так и в терминах расположения, упорядочивания информации в нем является одной из традиционных. Существуют десятки моделей, описывающих организацию следов в долговременой памяти (ДП), и ни одна из них не отображает универсальных закономерностей образования в хранилище памяти систем следов независимо от их модально-специфических свойств. Количественные модели потенциального запаса следов в хранилище памяти до сих пор, по-видимому, не построены, хотя экспериментирование над различными объемными характеристиками ведется уже не одно десятилетие. Исследование этих характеристик в ходе заучивания разнообразных видов материала при различных внешних и внутренних условиях получили широкое развитие во второй половине 50-х годов в связи с формированием представлений о двухкомпонентной теории памяти и накоплением количественных знаний о кратковременной памяти (КП). Большая часть экспериментально-психических исследований, предметом которых являлось изучение различных объемных характеристик ДП, выполнена с использованием относительно коротких списков заучиваемого материала: в экспериментах "на воспроизведение" в такие списки включаются обычно от нескольких десятков до нескольких сотен элементов. В то же время в опытах "на узнавание" списки охватывают от десятков сотен до многих тысяч элементов. Варьирование в столь широких пределах объемными переменными позволило получить некоторые количественные зависимости между временными и объемными параметрами процессов заучивания, хранения и воспроизведения. Несмотря на это, как показывает анализ литературы, накопленных данных еще недостаточно для индуктивного подхода к разработке количественных моделей объема памяти. Немного прибавляют к сделанному выводу и содержащиеся в психологической литературе знания о предельных возможностях человеческой памяти, которые ограничиваются, как правило, представлением впечатляющих результатов наблюдения за мнемонистами или опытов над ней в специальных условиях, например, гипноза. Для построения количественных моделей эти данные обладают относительной ценностью, так как создают впечатление о практически неограниченных, регламентированных лишь естественными биологическими запретами, потенциях памяти. Казалось, что новые возможности для исследования предельных объемных характеристик хранилища были связаны с развитием теории информации и проникновением в психологию и в смежные науки теоретико-информационного подхода. В соответствии с гипотетическими оценками, сделанными на его основе, емкость хранилища памяти исчислялась в диапазоне 10"6" - 10"21" двоичных единиц. Однако эти оценки не пригодны для описания емкости хранилища памяти на собственно психологическом языке, т. е. языке содержащихся в памяти образов и других единиц опыта - элементов того алфавита, который формируется, накапливается и консолидируется человеком в процессе жизни и деятельности. Следовательно, изучение объемных показателей памяти, оценка ее предельных возможностей и теоретико-информационный подход оказываются малопродуктивными для установления психологически содержательных характеристик объема хранилища памяти. В связи с этим необходимо разработать новые подходы к моделированию памяти и создать модели, отображающие важнейшие законы организации хранилища. В работе [30] рассмотрен один из таких подходов и на его основе построена объемная структурная модель хранилища памяти, позволяющая на психологическом языке одновременно производить количественные оценки его емкости и описывать организацию систем следов некотором гипотетическом функциональном пространстве памяти. V. 2. 2. Описание модели. Под объемом (емкостью) хранилища понимается число размещенных в нем единиц хранения (дискретных следов), а понятие структуры, характеризующее распределение следов в хранилище, интерпретируется как структура порядка. Наложим ограничения на область дальнейшего исследования: будем рассматривать лишь те разделы хранилища, которые ответственны за фиксацию следов разных видов символического материала, например бессмысленных слогов, слов, графических знаков письменности и т. п. Для упорядочения важнейших характеристик памяти обратимся к методу систематизации понятий на основе базисов. Поскольку память можно определить как хранение информации во времени, то в качестве опорного базиса используем следующие понятия: "пространство", "время", "информация", "энергия". Диада "информация - время" является ведущей в определении памяти, но память обладает также эмпирическими и пространственными характеристиками. Однако анализ последних в целях получения соответствующих описаний памяти может производиться только на информационно-временной основе. Выделение информационно-временных свойств памяти как опорных для ее моделирования побуждает к поиску экспериментальных данных, указывающих прежде всего на общий класс функций, связывающих количество содержащейся в хранилище информации с временем ее накопления, сохранения и извлечения. Наиболее важными из информационных характеристик памяти являются ее объемные показатели. Собственно информационная природа этих показателей выражается в том, что они представляют собой меру разнообразия удерживаемого в памяти материала. Укажем на некоторые из известных в психологии зависимостей между объемными и временными параметрами мнемических процессов. 1. Исследование процессов научения позволили обнаружить, что результаты многих экспериментов, проверяющими связь между информационными и временными переменными в ходе обучения, удовлетворительно аппроксимируются экспоненциальной функцией y=y/max/[1-exp(-kt)], где y - сила навыка ( в частности, объем заученного материала); y/max/ - верхний предел силы навыка; t - число проб (временной показатель); k - константа, выражающая скорость научения. 2. Г. Эббингауз, а позднее и его последователи определили забывание как логарифмическую функцию времени y=k(clogt), где y - объем сохраняемого материала; k и c - экспериментальные константы. В законе Хика время латентного периода дизъюнктивной реакции Т/p/ описывается выражением Т/p/=a+blog/c/y, где a и b - константы (a характеризует несократимую долю величины времени реакции); y - длина алфавита сигналов, из которого производится выбор при опознании сигнала (объем следов в памяти). Если пренебречь величиной a, то указанное выражение можно записать так: Т/p/=blod/c/y, откуда y=c/Т/p//b. Таким образом, во всех рассмотренных случаях информация и время, выступающие атрибутами математических процессов, связаны элементарными взаимо-обратными функциями: показательной и логарифмической. В каком классе функций следует искать в явном виде зависимость между объемными и временными переменными? Приведенные выше примеры указывают на класс элементарных показательных функций. Учитывая специфику рассматриваемого феномена (памяти) и ее свойство аддитивности для вербального материала, естественно сделать некоторое обобщение и перейти от показательных функций к сумме показательных функций, а классе этих математических объектов попытаться найти интересующую нас зависимость. В общем виде сумму показательных функций можно записать так: ============Формула 1 стр. 110========== y(n)=A/n/a"n"+A/n-1/a"n-1"+...+A/1/a"1"+A/0/a"0". Положив для простоты коэффициенты A/0/, A/1/, ... равными единице, получим выражение: ============Формула 2 стр. 110========== y(n)=a"n"+a"n-1"+...+a+1, Которое можно представить в виде возрастающей геометрической прогрессии с членом b/1/=1 и q=a. Д. А. Игонин предложил использовать эту функцию для построения информационно-временной модели памяти, сформулировав гипотезу о слоистой организации хранилища, базирующуюся на следующих положениях: 1) слоистость хранилища памяти понимается прежде всего как функциональная слоистость, обнаруживаемая при информационно-веременным признака, слои в памяти упорядочены и могут быть пронумерованы; 2) объемы совокупностей следов, локализованных в каждом из слоев, ограничены и возрастают с увеличением номера слоя; 3) число n слоев ограничено (1†n†8);4) кроме того, допускается, что временные характеристики мнемонических процессов запоминания, хранения, забывания и извлечения с увеличением номера слоя монотонно возрастают; 5) хранилище может заполняться следами, функционирующими на репродуктивном, "узнающем" и облегчающем уровнях памяти [50]. На репродуктивном уровне памяти слои хранилища заполняются последовательно с ростом номера n; на "узнающем" и облегчающем уровнях памяти така очередность необязательна. Рассмотрим следующие переменные: n - число заполненных в хранилище слоев; a - объемный параметр, характеризующий скорость КП на данный вид материала, либо, возможно, емкость кратковременного буфера повторения [11]; y(nn) - максимальное число следов в хранилище (емкость хранилища) при условии, что слой n заполнен целиком; z - величина в диапазоне n-1<я†n, характеризующая степень заполнения следами слоя n; y(z) - наличный объем следов в хранилище при данной величине z, причем из всего множества значений аргумента z рассматриваются лишь те, при которых функция y(n-1

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
17  - 18  - 19  - 20  - 21  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору