Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Наука. Техника. Медицина
   Домашний очаг
      Звонкин А.. Домашняя школа для дошкольников -
Страницы: - 1  - 2  - 3  - 4  - 5  -
а я и не рассчитывал, что поймут! Мы просто играли". (А играть вместе со взрослыми для малышей всегда особое удовольствие!) Итак, сформулирую еще раз общее направление поиска: не наука сама по себе, как готовый продукт прошлых поколений, а те предварительные, предшествующие ей наблюдения, которые послужили толчком к ее появлению (Подчеркнуто мной. – ВЛ). Блестящая идея! Она справедлива для любого учебного предмета: прежде чем переходить к систематическому изучению любой науки, целесообразно приобщить ребенка (особенно в дошкольном возрасте) к наблюдениям, которые в истории человечества предшествовали возникновению этой науки. Входя в науку не через освоение готовых знаний, а через собственные наблюдения, впечатления и размышления, ребенок сохраняет свое видение мира, а значит и способность к самостоятельным открытиям (а не только к использованию опыта предков). Хочу рассмотреть один пример более подробно. Увлекательная, если сначала пощупать руками Всего лишь одна простая задачка - а как много она дает поводов для размышлений! Здесь и психология, и педагогика, и математика (и даже чуточку философия) сплелись в нерасторжимый узел. Вот сейчас увидите. Задача эта относится к области комбинаторики. Когда-то такую науку проходили в школе, в девятом классе. Потом сочли очень трудной (вспомните хотя бы такое пугало, как бином Ньютона!) и из программы исключили. А все трудности старшеклассников состояли попросту в том, что им приходилось сразу начинать с формул, не пощупав ничего руками. В данном случае выражение "пощупать руками" надо понимать буквально. Ведь в комбинаторике речь идет о подсчете количества тех или иных комбинаций предметов. Только самих предметов-то нет - их надо вообразить, и комбинации тоже. Вот если бы начать с комбинирования реальных кубиков, фишек... Мы рассаживаемся вокруг мозаики. Любопытно, связан ли порядок в игрушках с порядком в мыслях? Задание такое: надо построить "бусы" - цепочку из пяти фишек, в которой две фишки должны быть черными, а оставшиеся три - белыми. Это, разумеется, можно сделать разными способами. Так вот, наша задача как раз и состоит в том, чтобы перебрать все способы и при этом избежать повторений. [Image14.gif (8772 bytes)] Рис.1. По науке эти последовательности называются сочетаниями из пяти элементов по два: их количество обозначается С25 и равно { 5х(5–1)} 2 = 10. Ничего этого дети, конечно, не знают и на наших занятиях не узнают. Они просто строят бусы - по очереди, один за другим. Каждый результат проверяется всеми вместе - действительно ли он новый или совпадает с каким-нибудь из построенных ранее. Порой и спорим. [Image15.gif (1360 bytes)] Рис.2. Например, вот это (рисунок 2) - одно решение или два разных? В конце концов доходим до десяти решений. Главный вопрос комбинаторики - сколько всего имеется решений. Но мальчики еще очень далеки от него. Они вообще пока не видят разницы между "это невозможно" и "у меня не получается", и выражают твердую уверенность в том, что уж я-то могу построить и одиннадцатое решение, и двенадцатое, и вообще сколько захочу. Приходится взяться за дело мне самому. Ребята перебирали свои решения как попало, без всякой системы. Зато я демонстрирую образец систематичности: перебираю решения в строго определенном порядке. Сначала ставлю одну черную фишку на первое место, а вторую - поочередно на второе, третье, четвертое, пятое места. Когда эта серия исчерпана, ставлю первую фишку на второе место, и т. д. Вы думаете, это производит впечатление? Ни малейшего. Единственное, что они поняли, - это то, что у меня тоже ничего не вышло. Отличить одно решение от другого они уже могут, а вот отличить порядок от беспорядка им пока не по силам. Надо отложить эту задачу этак на полгодика. (А пока, может быть, приучать их складывать все игрушки на свои места. Любопытно, связан ли порядок в игрушках с порядком в мыслях?) К чему ведет взрослая привычка подставлять свою точку зрения вместо ребячьей Полгода прошло. Но не давать же детям ту же самую задачу снова! Мне приходит в голову, сохранив математическое существо задачи, изменить ее внешнее, физическое оформление. Каждый получает листок, на котором нарисованы сцепленные друг с другом кружочки, по пять штук в каждом ряду (рисунок 3). [Image17.gif (1541 bytes)] Рис.3. Задача состоит в том, чтобы в каждой цепочке два кружка закрасить, а остальные три оставить пустыми. Разумеется, разными способами и без повторений. Чемпионом будет тот, кто найдет больше всего решений. (И еще одна деталь, на первый взгляд пустячная. Я даю всем ребятам фломастеры самых разных цветов, а в дальнейших обсуждениях этот факт старательно игнорирую: каждый раз два кружка можно закрашивать любым цветом. Я надеюсь, что, в какой-то мере это подчеркнет чисто комбинаторную природу задачи. А в другой группе я вместо кружков рисовал квадраты, треугольники и т. п.). Какая красивая педагогическая находка! Педагог задумал не сообщать детям готовые знания, развить их способность наблюдать, осмысливать наблюдения и благодаря этому самостоятельно обнаруживать природные закономерности. В данном случае усилия А.Звонкина направлены на то, чтобы дети открыли вероятностный характер некоторых явлений. Для этого взрослый хочет "самую малость подчеркнуть вероятностную природу" наблюдаемых детьми явлений. Как же это сделать, не сообщая детям законов теории вероятности? Неожиданное и изящное педагогическое решение состоит в том, чтобы сначала предложить ребенку лишние данные, хорошо заметные малышу, а затем "тщательно игнорировать их". Таким образом педагог, не называя сути явления, указывает на то, что не относится к сути наблюдаемого явления. Какой своеобразный педагогический "минус-прием"! Надо взять на вооружение. Несколько минут самостоятельной работы (показывающей между прочим, что задача на бумаге труднее задачи на мозаике, несмотря на прошедшие полгода), затем шумный обмен мнениями и результатами. Теперь у всех по десять решений. "А вы помните, у нас уже была один раз очень похожая задача..." Ведь вот как легко промахнуться, подставив свою точку зрения вместо ребячьей! Что значит похожая? Мне как-то казалось само собой разумеющимся: похожая задача - это та, где тоже фигурировали сочетания из пяти предметов по два. А дети считают похожими те задачи, в которых тоже надо было рисовать фломастерами. Не люблю подсказывать, но на этот раз приходится. Мальчики с радостью хватаются за мозаику, строят бусы на ней и даже сами догадываются сверить решения на мозаике и на листочках. Кто-то вспоминает, что в прошлый раз тоже получилось десять решений. Это, наконец-то, повод для первого сомнения. "А что, и правда больше нельзя построить?" Я загадочно улыбаюсь и перехожу к другому заданию. Вы обратили внимание на то, как последовательно педагог реализует свой принцип: "Не объяснять ребенку закономерности и правила, известные взрослым, а давать ему материал для размышлений и наблюдений". Этому же принципу стремятся следовать учителя, работающие по системе развивающего образования Д.Б.Эльконина - В.В.Давыдова. Золотая жила, или Задача-хамелеон Кажется, я набрел на золотую жилу. Вскоре та же задача появляется в третий, в четвертый и даже в пятый раз. Посмотрите, как непохоже она выглядит в своем новомобличье. В порядке очереди каждый получает листок клетчатойбумаги, на котором нарисован прямоугольник 3х4 клетки.(Секундный спор о том квадрат это или нет, после чего можноформулировать условие задачи.) Требуется нарисовать всевозможные дороги из левого нижнего угла в правый верхний,но при одном условии: из каждой клетки можно передвигатьсятолько направо или вверх (рисунок 4). Встретив эту задачу в книге, я и сам не сразу сообразил, как она связана с предыдущими. Если вам, уважаемые читатели, это тоже не совсем ясно, потерпите немного - сейчас все разъяснится. а а а б б а а а б б а а а б б Рис. 4. Работа кипит, чувствуется возросшая квалификация моих "математиков": и ошибок меньше, и все десять решений найдены довольно быстро. (Вот еще один "подводный камень": мальчики уже начинают привыкать к тому, что во всех комбинаторных задачах ответом служит число 10. Обязательно надо будет в ближайшее же время подбросить им побольше задач с разным количеством решений.) Теперь время самого важного вопроса: чтобы пройти из угла в угол листочка, сколько шагов надо сделать направо и сколько вверх? Только сначала надо договориться о том, что такое шаг, а то я считаю шагом переход из клетки в соседнюю, а ребята - любой прямолинейный отрезок. Договариваемся. Из-за чего ребенок делает ошибки, то есть решает задачу, которую мы перед ним поставили, не так, как мы считаем правильным? Одна из самых распространенных причин детских "ошибок" - мы. Точнее – наша непособность четко сформулировать задание (или небрежность наших формулировок). Мы вкладываем в свое задание один смысл, а ребенок воспринимает сказанное нами по-своему, иначе, чем мы. Отсюда простой вывод: если ребенок совершает ошибку, нужно проверить, правильно ли мы дали задание, нет ли в нашей формулировке задания неоднозначности. Ну теперь-то уж ответ очевиден? Опять нет! Я в недоумении и после занятия обдумываю причину. А и в самом деле, вопрос казался мне простым только по недомыслию. Как часто учебные и жизненные задачи (те, которые жизнь задает в виде "проблемных ситуаций") кажутся нам простыми только по недомыслию! Случается это обычно со взрослыми, которым когда-то подсказали одно из возможных решений задачи как единственно правильное (а есть ли другие решения, они не проверяли). Или из-за того, что эти задачи и ситуации стали привычными для нас, взрослых, и мы забыли, как нам было трудно найти решение впервые. Или по иной причине. Так или иначе, давайте выведем из этого наблюдения еще одно золотое правило: задавая малышу задачу, каждый раз будем глядеть на нее глазами ребенка и пробовать решить ее так, будто решаем впервые. Кстати, это пример того, как благотворно для нас общение с малышом, как оно "вынуждает" нас (помогает нам) вспоминать об источниках и границах наших знаний, освобождаться от шаблонов и привычных заблуждений. Ведь именно на этом свойстве - что количество шагов по горизонтали и по вертикали одинаково для всех путей - основано координатное представление векторов, то есть тот факт, что при сложении векторов их координаты тоже складываются. Четко помню, как когда-то меня, уже взрослого, поразило(как важно, став учителем или родителем, помнить о том, что поражает в детстве! – ВЛ) это свойство векторов. На его основе можно сделать хорошую серию задач и с ее помощью даже дать намек на отрицательные числа (если допускать шаги назад, но подсчитывать их со знаком минус). Как важно хотя бы на мгновение усомниться Ну а пока на занятии мы старательно подсчитываем шаги: оказывается, каждая дорожка содержит ровно три шага направо и ровно два шага вверх. Поэтому на следующем занятии мы пишем такие последовательности: ВВППП, ВПВПП, ВППВП и т.д. - в каждой три буквы П и две буквы В. По замыслу каждая буква П обозначает шаг направо, а буква В - шаг вверх (рисунок 5). а б а а б ППВПВ а а а б б ВПППВ Рис.5 Надо было видеть то волнение, что охватило ребят, когда я показал им эту связь! Все-таки показал, подсказал, а не только дождался, пока дети откроют связь сами. Без этого не обойтись. У А.Звонкина "показал" случается очень редко. Соотношение между "показал" и "дождался, пока дети откроют сами" определяется чувством меры педагога, индивидуальными особенностями учеников, темой обсуждения. Готовых рецептов здесь нет: общение с ребенком - дело творческое. Чутье педагога, позволяющее ему успешно решать образовательные задачи, я назвал бы педагогическим вкусом. Формирование такого вкуса, на мой взгляд, главная задача педагогических вузов и колледжей. А так как учебные заведения этой задачи перед собой обычно не ставят, его формирование становится важнейшей задачей педагогического самообразования (в том числе и педагогического самообразования родителей).Они немедленно потребовали разрезать листок, на котором написаны наши пятибуквенные слова, и, отталкивая друг друга, стали прикладывать каждое слово к соответствующей дорожке. Я остаюсь сторонним наблюдателем, однако пытаюсь невзначай подкинуть еще одну мысль. "Может быть, мы заодно и еще какие-нибудь решения найдем, - говорю я. - Одиннадцатое, двенадцатое..." Один лишь Женя откликается на мои слова: "Нет, - говорит он. - Ведь здесь десять и там тоже". - "Но, может быть, они разные? Здесь одни десять решений, а там другие?" К этому моменту, однако, все бумажки уже разложены, и наши надежды не оправдались: обе группы по десять решений в точности соответствуют одна другой, или,как говорят математики, находятся во взаимно однозначном соответствии. Как тем не менее важно хотя бы на мгновение усомниться в результате, чтобы потом ощутить его как результат! Озарение сопровождается радостным воплем Сейчас, на волне энтузиазма, можно продвинуться чуточку дальше. "А скажите, ребята, можно было обозначить шаги направо и вверх другими буквами? Не П и В, а другими?" - "Конечно! Какими хочешь можно". - "Ну какими, например?" - "Например, А и Б", - говорит Петя. "Или, например, твердый знак и мягкий знак", - это Дима. "Или, например, - говорю я, - шаг направо обозначить плюс, а шаг вверх - запятой". "О-о-о!" - хохочут мальчики. "Или, - продолжаю я бесстрастным тоном, - шаг направо обозначать черным кружком, а шаг вверх - белым". - "Как это?" - "А вот так". а б а а б Рис.6 l - l - m - l - m Рис.7 Я беру один из рисунков, допустим такой (рисунок 6), и соответствующую ему подпись ППВПВ и рисую рядом картинку (рисунок 7). И в наступившей паузе - паузе перед взрывом - еще успеваю соединить свои кружочки линиями, придав им окончательное сходство со второй задачей. Узнали! Тут ошибиться нельзя: озарение сопровождается радостным воплем и чуть ли не плясками. На столе все смешивается, и продолжать дальше становится решительно невозможно. Пора кончать занятие. Теперь можно отступить примерно на месяц, отвлечься, позаниматься другими задачами. Пусть идея уляжется, пустит корни. К тому же однотипные задачи могут скоро надоесть (курсив мой. – ВЛ). Как важно помнить об этом и не спешить закреплять успех! Закрепить успех - тактическая задача. Стратегическая - сохранить у ребенка желание учиться, сберечь готовность мыслить самостоятельно, получая от этого интеллектуальное удовольствие. Грандиозная идея, которая таится за скромным словечком "обозначить" И вот - финиш. На столе пять коробок и два шарика: нужно класть эти два шарика в две коробки, оставляя остальные три коробки пустыми (рисунок 8). И чтоб не повторяться. Рис.8. Работа начинается бойко, но уже на четвертом или пятом шаге возникает ожесточенный спор, было уже такое решение или нет. Мальчики обращаются ко мне как к арбитру, но я делаю вид, что тоже не помню. Как быть? Между прочим, далеко не каждый ребенок сообразит, что делать в такой ситуации. Нужно обозначить каким-то значком пустую коробку и каким-то другим - коробку с шариком, а все найденные решения записывать. Но за этим скромным словечком "обозначить" прячется грандиозная идея, родившаяся и выросшая вместе с человеческой цивилизацией. Достаточно вспомнить во многом еще загадочную историю возникновения письма, эволюции пиктограмм в иероглифы, иероглифов - в алфавитное письмо, и т. д. Сколько существует на свете математика, она всегда занималась изобретением и усовершенствованием систем обозначений - сначала для чисел, потом для алгебраических операций, потом для все более и более абстрактных сущностей. Уже в нашем веке учение о знаковых системах осознало себя в качестве самостоятельной науки - семиотики. (Недаром так недоумевают первоклассники, когда им говорят: "Обозначим слог прямоугольником, обозначим гласный звук красным кружочком, твердый согласный - черным кружочком, мягкий - синим кружочком; обозначим неизвестное число буквой х...". Это же так просто, так понятно - для нас с вами: обозначим - и все дела. А дети в тупике.) Выразительный пример того, о чем говорилось в восьмой сноске ("Как часто учебные и жизненные задачи кажутся простыми нам только по недомыслию!") Изобретаем письменность: рисунок - пиктограмма - иероглиф… На нашем кружке я всегда пытался не только решать отдельные задачи, но и формулировать, хотя бы для себя, сверхзадачи. Знакомство с семиотической идеей - одна из таких сверхзадач. Мы не раз обсуждали то, что числа обозначаются цифрами, звуки речи - буквами, а, скажем, музыкальные звуки - нотами. Вспомнили и другие системы знаков, например дорожные знаки. И всегда, когда было можно (и полезно), придумывали значки для разных объектов, с которыми оперировали. Так что эта идея для ребят уже не совсем новая. Вот мальчики и предлагают "рисовать" решения. Поначалу они и в самом деле пытаются делать что-то вроде реалистических рисунков; я бы сказал: находятся на пиктографическом уровне. Но это трудно, и довольно скоро мы переходим на иероглифический уровень: рисунки становятся более абстрактными - теперь пустая коробка обозначается квадратом, а заполненная - квадратом с кружком внутри. Я предлагаю рисовать в последнем случае просто кружок. Очередное препятствие: дети не умеют рисовать аккуратно, и нарисованный ими круг не всегда легко отличить от квадрата. Тогда я делаю еще одно предложение: рисовать круг с крестом. Теперь изображенное выше решение выглядит так: (рисунок 9). Рис.9. "А почему с крестом?" - "А какая разница, как обозначать", - отвечаю я, пытаясь равнодушным пожиманием плеч еще раз намекнуть на относительную самостоятельность знака по отношению к обозначаемому объекту и его (в известных пределах) произвольность. Минута педагогического триумфа: дети приходят к общематематической идее! А между тем получившаяся задача в одном отношении сложнее предыдущих. Ведь теперь каждое новое решение нужно сравнивать не с предшествующими решениями, а с их условными обозначениями. Педагогический успех - награда тому, кто постоянно внимателен и чуток к ребенку. Не знаю, что помогает А.Звонкину так тонко проникать в детскую - то ли прекрасная память и самоанализ, то ли способность к перевоплощению в ребенка, то ли интуиция, то ли знакомство с трудами психологов (каждый это делает по- своему). Но именно зоркость к детским интеллектуальным трудностям позволяет взрослому успешно строить радостное и взаимно развивающее общение с детьми. На этот раз мальчики находят всего девять решений и после нескольких безуспешных попыток приходят к выводу, что больше решений нет. И вот наступает минута моего триумфа, та, которую я так долго ждал и так упорно готовил. Петя вдруг восклицает, тыча пальцем в лист бумаги: "Ой, смотрите: да это же пэ, вэ, пэ, вэ, пэ!" Дима вскакивает очень взволнованно: "Да, да, папа, я уже давно хотел тебе это сказать!" - "Значит, должно быть еще одно решение", - подхватывает Женя. - А давайте, - предлагает Дима, - принесем решение той задачи и найдем, чего не хватает. Ходить, конечно, далеко не приходится. Подобно известному роялю в кустах, конверт с решениями всех предыдущих задач оказался здесь же, на столе. Какую из задач принять за основу? Мальчики предлагают полоски бумаги с кружками, и очень скоро, уже на четвертом шаге, мы нашли недостающее десятое решение. (Видимо, ни один триумф не обходится без небольшого конфуза. Когда мы раскладывали полосочки с бусами, одна из них случайно перевернулась на 180 градусов. В результате одно из решений пропало, а другое, ему симметричное, оказалось повторенным дважд

Страницы: 1  - 2  - 3  - 4  - 5  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору