Страницы: -
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
19 -
20 -
21 -
22 -
23 -
24 -
25 -
О Г Л А В Л Е Н И Е
ВВЕДЕНИЕ
1. Механические эффекты
1.1. Силы инерции.
1.1.1. Инерционное напряжение.
1.1.2. Центробежные силы.
1.1.3. Момент инерции.
1.1.4. Гироскопичекий эффект.
1.2. Гравитация.
1.3. Трение.
1.3.1. Явление аномально низкого трения.
1.3.2. Эффект безысносности.
1.3.3. Эффект Джонсона-Рабека.
2. Деформация.
2.1. Общая характеристика.
2.1.1. Связь электропроводности с деформацией.
2.1.2. Электропластический эффект.
2.1.3. Фотопластический эффект.
2.1.4. Эффект Баушингера.
2.1.5. Эффект Пойнтинга.
2.2. Передача энергии при ударах. Эффект
Ю.Александрова.
2.3. Эффект радиационного распухания.
2.4. Сплавы с памятью.
3. Молекулярные явления.
3.1. Тепловое расширение вещества.
3.1.1. Сила теплвого расширения.
3.1.2. Получение высокого давления.
3.1.3. Разность эффекта.
3.1.4. Точность теплового расширения.
3.2. Фазовые переходы. Агрегатное состояние вещества.
3.2.1. Эффект сверхпластичности.
3.2.2. Изменение плотности и модуля упругости при
фазовых переходах.
373. Поверхностные явления. Капиллярность.
3.3.1. Поверхностная энергия.
3.3.2. Смачивание.
3.3.3. Автофобность.
3.3.4. Капиллярное давление, испарение и конденсация
3.3.5. Эффект капиллярного подьема.
3.3.6. Ультразвуковой капиллярный эффект.
3.3.7. Термокапиллярный эффект.
3.3.8. Электрокапиллярный эффект.
3.3.9. Капиллярный полупроводник.
3.4. Сорбция.
3.4.1. Капиллярная конденсация.
3.4.2. Фотоадсорбционный эффект.
3.4.3. Влияние электрического поля на адсорбцию.
3.4.4. Адсорболюминесценция.
3.4.5. Радикально-рекомбинационная люминесценция.
3.4.6. Адсорбционная эмиссия.
3.4.7. Влияние адсорбции на электропроводность
полупроводников.
3.5. Диффузия.
3.5.1. Эффект люфора.
3.6. Осмос.
3.6.1. Электроосмос.
3.6.2. Обратный осмос.
3.7. Тепломассообмен.
3.7.1. Тепловые трубы.
3.8. Молекулярные неолитовые сита.
3.8.1. Цветовые эффекты в неолитах.
4. ГИДРОСТАТИКА. ГИДРО-АЭРОДИНАМИКА.
4.1.1. Закон Архимеда.
4.1.2. Закон Паскаля.
4.2. Течение жидкости и газа.
4.2.1. Ламинарность и турбулентность.
4.2.2. Закон Беркулли.
4.2.3. Вязкость.
4.2.4. Вязкоэлектрический эффект.
4.3. Явление сверхтекучести.
4.3.1. Сверхтеплопроводность.
4.3.2. Термомеханический эффект.
4.3.3. Механокалорический эффект.
4.3.4. Перенос по пленке.
4.4.2. Скачок уплотнения.
4.4.3. Эффект Коанда.
4.4.4. Эффект воронки.
4.5. Эффект Магнуса.
4.6. Дросселирование жидкостей и газов.
4.6.1. Эффект Джоуля-Томсона.
4.7. Гидравлические удары.
4.7.1. Электрогидравлический удар.
4.7.2. Светогидравлический удар.
4.8. Квитанция.
4.8.1. Гидродинамическая квитанция.
4.8.2. Акустическая квитанция.
4.8.3. Сонолюминесценция.
5. КОЛЕБАНИЯ И ВОЛНЫ.
5.1. Механические колебания.
5.1.1. Свободные колебания.
5.1.2. Вынужденные колебания.
5.1.3. Явление резонанса.
5.1.4. Автоколебания.
5.2. Акустика.
5.2.1. Явление реверберации.
5.3. Ультразвук.
5.3.1. Пластическая деформация и упрочнение.
5.3.2. Влияние ультразвука на физико-химические свойства
металлических расплавов:
5.3.2.1. на вязкость
5.3.2.2. на поверхностное натяжение
5.3.2.3. на теплообмен
5.3.2.4. на диффузию
5.3.2.5. на растворимость металлов и сплавов
5.3.2.6. на модифицирование сплавов
5.3.2.7. на дегазацию расплавов.
5.3.3. Ультразвуковой капиллярный эффект.
5.3.4. Некоторые возможности использования ультразвука.
5.3.5. Акустомагнетоэлектрический эффект.
5.4. Волновое движение.
5.4.1. Стоячие волны.
5.4.2. Эффект Допплера-Физо.
5.4.3. Поляризация.
5.4.4. Дифракция.
5.4.5. Интерференция.
5.4.6. Голография.
6. ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ.
6.1. Взаимодействие тел.
6.1.1. Закон Кулона.
6.2. Индуцированные заряды.
6.3. Втягивание диэлектрика в конденсатор.
6.4. Закон Джоуля-Ленца.
6.5. Проводимость металлов.
6.5.1. Влияние фазовых переходов.
6.5.2. Влияние высоких давлений.
6.5.3. Влияние состава.
6.6. Сверпроводимость.
6.6.1. Критические значения параметров.
6.7. Электромагнитное поле.
6.7.1. Магнитная индукция. Сила Лоренца.
6.7.2. Движение зарядов в магнитном поле.
6.8. Проводник с током в магнитном поле.
6.8.1. Взаимодействие проводников с током.
6.9. Электродвижущая сила индукции.
6.9.1. Взаимная индукция.
6.9.2. Самоиндукция.
6.10. Индукционные токи.
6.10.1. Токи Фуко.
6.10.2. Механическое действие токов Фуко.
6.10.3. Магнитное поле вихревых токов. Эффект Мейснера.
6.10.4. Подвеска в магнитном поле.
6.10.5. Поверхностный эффект.
6.11. Электромагнитные волны.
6.11.1. Излучение движущегося заряда.
6.11.2. Эффект Вавилова-Черенкова.
6.11.3. Бататронное излучение.
7. ДИЭЛЕКТРИЧЕСКИЕ СВОЙТВА ВЕЩЕСТВА.
7.1.1. Изоляторы и полупроводники.
7.1.2. Сопротивление электрическому току.
7.1.3. Тепловые потери.
7.2. Диэлектрическая проницаемость.
7.2.1. Частотная зависимость.
7.3. Пробой диэлектриков.
7.4. Электромеханические эффекты в диэлектриках.
7.4.1. Электростракция.
7.4.2. Пьезоэлектрический эффект.
7.4.3. Обратный пьеэоэффект.
7.5. Пироэлектрики.
7.5.2. Сегнетоэлектрики.
7.5.3. Сегнетоэлектрическая температура Кюри.
7.5.4. Антисегнетоэлектрики.
7.5.5. Сегнетоферромагнетики.
7.5.6. Магнитоэлектрический эффект.
7.6. Влияние электрического поля и механических напряжений
на сегнетоэлектрический эффект.
7.6.1. Сдвиг температуры Кюри.
7.6.2. Аномалии свойств при фазовых переходах.
7.6.3. Пироэффект в сегнетоэлектриках.
7.7. Электреты.
8. МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА.
8.1. Магнетики.
8.1.1. Диамагнетики.
8.1.2. Парамагнетики.
8.1.3. Ферсомагнетизм.
8.1.3.1. Точка Кюри.
8.1.4. Антиферомагнетики.
8.1.4.1. Точка Нееля.
8.1.5. Температурный магнитный гистерезис.
8.1.6. Ферромагнетизм.
8.1.7. Супермарамагнетизм.
8.1.8. Пьезомагнетики.
8.1.9. Магнитоэлектрики.
8.2. Магнитокалорический эффект.
8.3. Магнитострикция.
8.3.1. Термострикция.
8.4. Магнитоэлектрический эффект.
8.5. Гиромагнитные явления.
8.6. Магнитоакустический эффект.
8.7. Ферромагнитный резонанс.
8.8. Аномалии свойств при фазовых переходах.
8.8.1. Эффекты Гипокинса и Баркгаузена.
9. КОНТАКТНЫЕ, ТЕРМОЭЛЕКТРИЧЕСКИЕ И ЭМИССИОННЫЕ
ЯВЛЕНИЯ.
9.1. Контактная разность потенциалов.
9.1.1. Трибоэлектричество.
9.1.2. Вентильный эффект.
9.2. Термоэлектрические явления.
9.2.1. Эффект Зеебека.
9.2.2. Эффект Пельтье.
9.2.3. Явление Томсона.
9.3. Электронная эмиссия.
9.3.1. Автоэлектронная эмиссия.
9.3.2. Эффект Мольтере.
9.3.3. Тунельный эффект.
10. ГАЛЬВАНО- И ТЕРМОМАГНИТНЫЕ ЯВЛЕНИЯ.
10.1.1. Гальваномагнитные явления.
10.1.2. Эффект Хола.
10.1.3. Эффект Этиингсгаузена.
10.1.4. Магнитоопротивление.
10.1.5. Эффект Томсона.
10.2. Термомагнитные явления.
10.2.1. Эффект Нернета.
10.2.2. Эффект Риги-Ледюка.
10.2.3. Продольные эффекты.
10.2.4. Электронный фототермомагнитный эффект.
11. ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ.
11.1. Факторы, влияющие на газовый разряд.
11.1.1. Потенциал ионизации.
11.1.2. Фотоионизация атомов.
11.1.3. Поверхностная ионизация.
11.1.4. Применение ионизации.
11.2. Высокочастотный тороидальный разряд.
11.3. Роль среды и электродов.
11.4. Тлеющий разряд.
11.5. Страты.
11.6. Коронный разряд.
11.7. Дуговой разряд.
11.8. Искровый разряд.
11.9. Факельный разряд.
11.10. "Стекание" зарядов с острия.
12. ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ.
12.1. Электроосмос.
12.2. Обратный эффект.
12.3. Электрофорез.
12.4. Обратный эффект.
12.5. Электрокапиллярные явления.
13. СВЕТ И ВЕЩЕСТВО.
13.1. Свет.
13.1.1. Световое давление.
13.2. Отражение и преломление света.
13.2.1. Полное внутреннее отражение.
13.3. Поглощение и рассеяние.
13.4. Испускание и поглощение.
13.4.1. Оптико-акустический эффект.
13.4.2. Спектральный анализ.
13.4.3. Спектры испускания.
13.4.4. Вунужденное извлечение.
13.4.5. Инверсия населенности.
13.4.6. Лазеры и их применение.
14. ФОТОЭЛЕКТРИЧЕСКИЕ И ФОТОХИМИЧЕСКИЕ ЯВЛЕНИЯ.
14.1. Фотоэлектрические явления.
14.1.1. Фотоэффект.
14.1.2. Эффект Дембера.
14.1.3. Фотопьезоэлектрический эффект.
14.1.4. Фотомагнитный эффект.
14.2. Фотохимические явления.
14.2.1. Фотохромный эффект.
14.2.2. Фотоферроэлектрический эффект.
15. ЛЮМИНЕСЦЕНЦИЯ.
15.1. Люминесценция, возбуждаемая электромагнитным
излучением.
15.1.1. Фотолюминесценция.
15.1.2. Антистокосовские ..............
15.1.3. Рентгенолюминесценция.
15.2. Люминесценция, возбуждаемая корпускулярным
излучением.
15.2.1. Катодолюминесценция.
15.2.2. Ионолюминесценция.
15.2.3. Радиолюминесценция.
15.3. Электролюминесценция.
15.3.1. Инжекцронная люминесценция.
15.4. Химилюминесценция.
15.4.1. Радикалолюминесценция.
15.4.2. Кандолюминесценция.
15.5. Механолюминесценция.
15.6. Радиотермолюминесценция.
15.7. Стимуляция люминесценции.
15.8. Тушение люминесценции.
15.9. Поляризация люминесценции.
16. АНИЗОТРОПИЯ И СВЕТ.
16.1. Двойное лучепреломление.
16.2. Механооптические явления.
16.2.1. Фотоупругость.
16.2.2. Эффект Максвелла.
16.3. Электрооптические явления.
16.3.1. Эффект Керра.
16.3.2. Эффект Поккельса.
16.4. Магнитооптические явления.
16.4.1. Эффект Фарадея.
16.4.2. Обратный эффект.
16.4.3. Магнитооптический эффект Зерра.
16.4.4. Эффект Коттона-Муттона.
16.4.5. Прямой и обращенный эффект Зеемана.
16.5. Фотодихроизм-
16.5.1. Дихроизм.
16.5.2. Естественная оптическая активность.
16.6. Поляризация при рассеивании.
17. ЭФФЕКТЫ НЕЛИНЕЙНОЙ ОПТИКИ.
17.1. Вынужденное рассеяние света.
17.2. Генерация оптических гармоник.
17.3. Параметрическая генерация света.
17.4. Эффект насыщения.
17.5. Многофотонное поглощение.
17.5.1. Многофотонный фотоэффект.
17.6. Эффект самофокусирования.
17.7. Светогидравлический удар.
17.8. Гистеризисные скачки.
18. ЯВЛЕНИЯ МИКРОМИРА.
18.1. Радиоактивность.
18.2. Рентгеновское и -излучение.
18.2.1. адгезолюминисценция.
18.2.2. Астеризм.
18.3. Взаимодействие рентгеновского и -излучений с
веществом.
18.3.1. Фотоэффект.
18.3.3. Когерентное рассеяние.
18.3.4. Образование пар.
18.4. Взаимодействие электронов с веществом.
18.4.1. Упругое рассеяние.
18.4.2. Неупругое рассеяние.
18.4.3. Тормозное изучение.
18.4.4. Совместное облучение электрозами и светом.
18.5. Взаимодействие нейтронов с веществом.
18.5.1. Нейтронное распухание.
18.6. Взаимодействие -частиц с веществом.
18.7. Радиотермолюминесценция.
18.8. Эффект Месбауэра.
18.9. Электронный парамагнитный резонанс.
18.10. Ядерный магнитный резонанс.
18.11. Эффект Сверхаузера-Абрагама.
19. РАЗНОЕ.
19.1. Термофорез.
19.2. Фотофорез.
19.2.1. "Перпендикулярный" фотофорез.
19.3. Стробоскопический эффект.
19.4. Муаровый эффект.
19.4.1. Контроль размеров.
19.4.2. Выявление дефектов.
19.4.3. Конусные шкалы.
19.4.4. Измерение параметров оптических сред.
19.4.5. Контроль оптики.
19.5. Высокодисперсные структуры.
19.5.1. Консолидированные тела.
19.6. Эпекстрореологический эффект.
19.7. Ресалектрический эффект.
19.8. Жидкие кристалы.
19.8.1. Электрооптические эффекты.
19.8.2. Динамическое рассеяние.
19.8.3. Управление окраской кристаллов.
19.8.4. Визуализация ИК-изобретения.
19.8.5. Химическая чувствительность.
19.9. Смачивание (к 3.3.2)
19.9.1. Эффект ратекания жидкости под окисными пленками
металлов.
19.9.2. Эффект капиллярного клея.
19.9.3. Теплота смачивания.
19.9.4. Магнитотепловой эффект смачивания.
19.10. Лента Мебиуса.
19.11. Обработка магнитными и электрическими полями.
Приложение 1: Возможные применения некоторых физических
эффектов и явлений при решении
изобретательских задач.
В В Е Д Е Н И Е
- - - - - - - -
Вы держите в руках "Указатель физических эффектов и
явлений". Это не справочник, потому что он включает в себя
лишь незначительную часть огромного колличества эффектов и
явлений изученного окружающего нас мира. Это и не учебник.
Он не научит Вас эффективному использованию физики при ре-
шении головоломных технических задач. Роль "Указателя" зак-
лючается в том, что он поможет вам увидеть и ощутить одну
из важнейших тенденций развития технических систем -переход
от исследования природы и практического воздействия на нее
на макроуровне к исследованию к исследованию ее на микроу-
ровне и связанный с этим переход от макротехнологии к мик-
ротехнологии.
Микротехнология основывается на совершенно иных прин-
ципах, чем технология,имеющая дело с макротелами. Микротех-
нология строится на основе применения к производству совре-
менных достижений химической физики, ядерной физики,
квантовой механики. Это новая ступень взаимодействия чело-
века и природы, а самое главное - это взаимодействие проис-
ходит на языке природы, на языке ее законов.
Человек, создавая свои первые технические системы, ис-
пользовал в них макромеханические свойства окружаещего вас
мира. Это не случайно, так как научное познание природы на-
чалось исторически именно с механических процессов на уров-
не вещества.
Вещество с его внешними формами и геометрическими па-
раметрами является обьектом, непосредственно данным *
человеку в ощущениях. Это тот уровень организации материи,
на котором она предстает перед человеком как явление, как
количество, как форма. Поэтому каждый технологический метод
воздействия соответствовал (и во многих современных техни-
ческих системах сейчас соответствует) простейшей форме дви-
жения материи - механической.
С развитием техники все методы воздействия совершенс-
твуются, но тем не менее, в их соотношении можно проследить
известные изменения. Механические методы в большинстве слу-
чаев заменяются более эффективными физическими и химически-
ми методами. В добывающей промышленности, например, вместо
механического дробления руды и подьема ее на поверхность,
получают распространение методы выщелачивания рудного тела
и получением раствора металла с последующим его выделением
химическим путем. В обрабатывающей промышленности микротех-
нологии приводит к революционным преобразованием: сложные
детали выращивают в виде монокристалов, внутренние свойства
вещества изменяют воздействием сильных электрических, маг-
нитных, оптических полей. в строительстве использование
фундаментальных свойств вещества позволяет отказываться от
сложных и дорогих механизмов. Например: только одно явление
термического расширения позволяет создавать неломающиеся
домкраты, строить арочные мосты в 5 раз быстрее (при этом
отпадает необходимость в опалубке и подьемных механизмов).
Прямо на месте строительства можно сделать несущую часть
арочного моста высотой до 20 метров, а делается это сказоч-
но просто: два стометровых металлических листа накладывают
друг на друга, между ними помещают асбестовую прокладку.
Нижний лист нагревают токами ВЧ до 700 градусов, соединяют
его с верхним, а при остывании этого "пирога" получают ар-
ку.
Чем объяснить эффективность микротехнологии? Здесь
трудно различить вещество, являющееся орудием воздействия,
и вещество, служащее преом труда. Здесь нет инструмента не-
посредственного воздействия, рабочего оружия или рабочей
части машины, как это имеет место при механических методах.
Функции орудия труда выполняют частицы веществ-молекул,
атомы-участвующих в процессе. Причем сам процесс легко уп-
равляем, коль скоро мы можем легко воздействовать опреде-
ленными полями на части, создавая соответствующие условия и
тогда не только не нужно, но часто и не возможното есть ав-
томатически и непрерывно. В это проявляется, говоря словами
Гегеля, "хитрость" научно-технической деятельности.
Переход от механических и макрофизических методов воз-
действия к микрофизическим позволяет значительно упростить
любой технологический процесс, добиться при этом большего
экономического эффекта, получить безотходные процессы, если
вещества и поля на входе одних процессов становятся вещест-
вами и полями на выходе других. Надо только помнить, что
безграничность возможностей научно-технической деятельности
может успешно реализося лишь при соблюдении границ возмож-
ного в самой природе, а уж природа ведет свои производства
на тончайшем атомном уровне бесшумно, безотходно и пол-
ностью автоматически.
"Указатель" покажет Вам на примерах эффективности ис-
пользования законов природы проектировании новой техники
может быть подскажет решение стоящей пред Вами технической
задачи. В него вошли многие физэффекты, которые еще ждут
своего применения и своего "применителя" (не Вы ли им буде-
те?).
Но составителя нового сборника будут считать свою за-
дачу выполненной лишь в том случае, если помещенная в него
информация станет для Вас тем "зародышем", с помощью кото-
рого Вы "вырастите" для себя (и поделитесь с другими) мно-
гогранный кристалл физических эффектов и явлений, раство-
ренных в безграничном мире. И чем больше будет этот
"кристалл", тем будет проще заметить закономерности его
строения. Это интересует нас, надеемся, заинтересует и Вас
и, тогда следующий "Указатель" сможет стать настоящим лоц-
маном в необъятномморе технических задач.
ОБНИНСК, 1979 г. Денисов С.
Ефимов В.
Зубарев В.
Кустов В.
Несколько соображений об Указателе физэффектов.
--------- ----------- -- --------- -----------
Чтобы уверенно решать сложные изобретательские задачи,
нужна, во-первых, программа выявления технических и физических
противоречий. Во-вторых, нужен информационный фонд, включающий
средства устранения противоречий: типовые приемы и физические
эффекты. Разумеется, есть еще и "в-третьих","в-четвертых" и т.
д. Но главное - программа и информационное обеспечение.
Вначале была просто программа - первые модификации АРИЗ.
Путем анализа патентных материалов постепенно удалось соста-
вить список типовых приемов и таблицу их применения. В число
типовых приемов попали и некоторые физические эффекты. В сущ-
ности, все приемы прямо или косвенно "физичны". Скажем, дроб-
ление; на микроуровне этот прием становится диссоциацией-ассо-
циацией, десорбцией-сорбцией и т.п. Но в типовых приемах
главное - комбинационные изменения. Физика либо проста (тепло-
вое расширение, например), либо скромно держится на втором
плане.
К 1967-68 г.г. стало ясно, что дальнейшее развитие инфор-
мационного обеспечения АРИЗ требует создания фонда физических
явлений и эффектов. В 1969 г. за эту работу взялся студент-фи-
зик В.Гутник, слушатель Молодежной изобретательской школы при
ЦК ЛКСМ Азербайджана (в начале 1970 г. школа стала и "при РС
ВОИР";в 1971 г. была преобразована в АзОИИТ - первый в стране
общественный институт изобретательского творчества). В 1970 г.
была организовна Общественная лаборатория методики изобрета-
тельства при ЦС ВОИР. В план ее работы было включено создание
"Указателя применения физэффектов при решении изобретательских
задач".
За два года В.Гутник проанализировал свыше 5.000 изобрете-
ний "с физическим уклоном" и отобрал из них примерно 500 наи-
более интересных; эта информация положила начало картотеке по
физэффектам. К 1971 г. появились первые наброски Указателя. Но
В.Гутник ушел в армию, работа прервалась. С 1971 г. разработку
"Указателя" начал вести физик Ю.Горин, слушатель, а затем пре-
подаватель АзОИИТ ныне кандидат наук. К 1973 г. Ю.Горин подго-
товил первый "Указатель". В него были включены свыше 100 эф-
фектов и явлений и примеры их изобретательского применения.
Полный текст "Указателя" (300 машинописных страниц) в 1973 г.
был передан в ЦК ВОИР, но не был издан. В том же 1973 г. уда-
лось подготовить сокращенный текст "Указателя"