Страницы: -
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
19 -
20 -
, вдоль какой их оси
(т. е. в продольном или поперечном направлении) проходит ток; отношение
максимума сопротивления к минимуму равно 7 - больше, чем у любого другого
металла. То же самое можно сказать и о коэффициенте теплового расширения,
который изменяется в зависимости от направления тока почти втрое.
Незаурядные способности галлия хорошо отражать световые лучи позволили ему
не без успеха попробовать свои силы в производстве зеркал, причем
галлиевые зеркала не тускнеют даже при повышенных температурах. Окись
этого металла необходима для получения специальных стекол, обладающих
большим коэффициентом преломления, хорошо пропускающих инфракрасные лучи.
Сверхчистый галлий (не менее 99,999%) применяют как легирующую присадку к
германию и кремнию для повышения их полупроводниковых свойств. А не так
давно галлий доказал, что он и сам в этом отношении "не лыком шит": у
некоторых его соединений - с сурьмой, фосфором и особенно с мышьяком -
обнаружились явные полупроводниковые наклонности.
Особенно ярко они проявились при создании так называемых гетерпереходов,
обеспечивающих высокие рабочие характеристики полупроводниковых приборов.
Гетерпереход - это содружество двух различных по химическому составу
полупроводников, которые сращены в монокристалле. Теоретически ученые уже
давно сумели доказать, что такое совместное "проживание под одной крышей"
сулит полупроводниковой технике интересные перспективы. Однако подобрать
подходящую пару оказалось архитрудной задачей. Исследователи перепробовали
десятки различных сочетаний, но все они были далеки от идеала, а часто
вещества откровенно демонстрировали свою несовместимость. Ученым пришла в
голову мысль испытать в качестве партнеров арсенид галлия и арсенид
алюминия: их кристаллические решетки похожи, как две капли воды, а это не
могло не обнадеживать. Но неожиданно на пути вырос новый барьер - арсенид
алюминия был настолько неустойчив, что во влажной атмосфере разлагался
буквально на глазах.
Неужели снова неудача? Спас положение галлий. Атомы его, введенные в
арсенид алюминия, придавали тому нужную устойчивость. Проблема была решена
- техника обогатилась множеством новых совершенных приборов. Коллективу
ученых, создавших чудо-кристаллы, в 1972 году была присуждена Ленинская
премия.
Сфера деятельности химических соединений галлия постоянно расширяется. Их
можно встретить сегодня, в вычислительных устройствах и радарных
установках, термоэлементах для солнечных батарей и полупроводниковых
приборах ракетной техники. Они участвуют в изготовлении лазеров, создании
люминесцентных (светящихся) веществ, оказывают сильное каталическое
воздействие на многие важные процессы органической химии.
Еще недавно "гиперболоид инженера Гарина" (а точнее, писателя Алексея
Толстого) казался несбыточной фантазией, а сегодня современные
"гиперболоиды" - лазеры - прочно вошли в жизнь. Одним из первых лазерных
материалов стал арсенид галлия. По зарубежным данным, лазеры на арсениде
галлия - простые, эффективные, компактные - предполагалось использовать в
космической технике, в частности для связи между космонавтом, вышедшим в
открытое пространство, и космическим кораблем или между двумя станциями,
находящимися на околоземных орбитах. Намечалось также применить такой
лазер для ориентации корабля при посадке на Луну.
Космическая невесомость создает неповторимые условия для проведения
различных технологических операций. Интересные опыты по выращиванию
полупроводникового кристалла арсенида галлия проведены на американской
космической станции "Скайлэб". Если в земных условиях не удается вырастить
кристаллы этого вещества размером более 2-3 миллиметров, то в невесомости
получен отличный кристалл-великан длиной около 25 миллиметров. Подобные
эксперименты в космосе успешно прошли и на борту советской
научно-исследовательской станции "Салют-6". Кроме того, наши космонавты
провели на установке "Сплав" опыты по получению слитка, состоящего из
молибдена и галлия. Дело в том, что молибден почти вдвое тяжелее галлия и
в обычных условиях эти металлы не могут равномерно перемешиваться: при
застывании слитка верхние его слои оказываются богатыми галлием, а нижние
- молибденом. В космосе же царит невесомость, и перед ее законами молибден
и галлий равны, поэтому слиток получается равномерным по составу.
Вполне вероятно, что именно галлий поможет ученым ответить на вопрос,
почему... светит Солнце. Да-да, не удивляйтесь: ведь до сих пор наука
располагает лишь гипотезами о природе колоссальной энергии, миллиарды лет
беспрерывно излучаемой Солнцем. Одна из самых распространенных и
авторитетных гипотез утверждает, что в недрах небесного светила постоянно
идут процессы термоядерного синтеза. Но как это доказать?
Самыми убедительными, хотя и косвенными уликами могли бы стать нейтрино -
частицы, которые образуются при термоядерных реакциях. Но вот беда:
приобщить к делу эти улики необычайно трудно. Даже сам Вольфганг Паули -
швейцарский физик, еще в 1933 году теоретически предсказавший
существование нейтрино, полагал, что никто не сможет экспериментально
подтвердить наличие этих частиц, так как они не имеют ни массы, ни
электрического заряда. В то же время нейтрино обладают определенной
энергией и огромной проникающей способностью. Высвобождаясь в ядре Солнца,
они беспрепятственно проходят через толщу солнечного вещества и
колоссальным потоком низвергаются на Землю (как, разумеется, и на другие
небесные тела). Ученые считают, что на каждый квадратный сантиметр
поверхности нашей планеты ежесекундно обрушивается свыше 60 миллиардов
нейтрино. Однако зарегистрировать их крайне сложно: через любое вещество
они проходят, словно сквозь пустоту. И все же физики нашли некоторые
материалы, в которых нейтрино оставляют следы. Так, ядро атома хлора с
атомной массой 37, поглощая нейтрино, испускает электрон и превращается в
атом аргона с той же атомной массой. Эта реакция эффективно протекает лишь
с участием нейтрино, обладающих большой энергией. Но доля таких частиц в
нейтринном солнечном потоке чрезвычайно мала (менее одной десятитысячной).
Вот почему для экспериментов, связанных с поисками "неуловимых", нужны
поистине стерильные условия.
Попытка создать такие условия была предпринята в США. Чтобы по возможности
устранить влияние других космических частиц, громадную цистерну с
перхлорэтиленом (эту жидкость обычно применяют при химчистке) физики
упрятали под землю на глубину около полутора километров, воспользовавшись
для этого заброшенным золотым рудником в штате Южная Дакота. Согласно
теоретическим расчетам, каждые двое суток в цистерне три атома хлора-37
должны были превращаться в атомы аргона-37, причем считалось, что два
таких превращения произойдут "по вине" нейтрино, а третье-под действием
других излучений, ухитряющихся проникнуть даже через полуторакилометровую
толщу земли. Увы, обнаружить удавалось лишь один из трех атомов аргона-37,
а это скорее всего означало, что посланники Солнца тут ни при чем.
Так что же: нейтрино не поступают на Землю и, следовательно гипотеза о
термоядерном происхождении солнечной энергии неверна? Советские физики
полагают, что указанные эксперименты еще не дают основания отказываться от
сложившихся представлений о Солнце как о гигантском термоядерном реакторе.
Видимо, подобные опыты требуют еще большей точности. Кроме того, теория
говорит о том, что Солнце посылает на Землю большие потоки нейтрино с
относительно низкой энергией, для фиксации которых хлор-аргоновый метод
попросту непригоден. Вот тут на помощь и должен прийти герой нашего
повествования - галлий. Оказалось, что он может служить отличной мишенью
(или, как говорят физики, детектором) для нейтрино с малой энергией: ядра
изотопа галлия-71 охотно поглощают эти частицы и превращаются в ядра
германия-71. Определив число образовавшихся в мишени атомов германия-71,
ученые смогут измерить поток солнечных нейтрино. Пока это только теория,
но в нашей стране уже создана галлий-германиевая установка, а в горах
Северного Кавказа (в Баксанском ущелье) пробита глубокая штольня для
нейтринной обсерватории. И хотя для работы установки потребуется не одна
тонна галлия, в ходе экспериментов этот довольно дорогой металл
практически останется целым и невредимым. Пройдет несколько лет, и галлий,
возможно, прольет свет на одну из важнейших проблем современной
астрофизики.
"ЗЛОЙ ДЖИН" (РУБИДИЙ)
Если верить Библии. - Древние камни Гренландии. - Помолодевшие Гималаи. -
Часы, которые не идут. - Находка в спектре. - Словесный портрет. - Бунзен
выпаривает "море". - Четверть века спустя. - "Камера предварительного
заключения". - Схватка со льдом. - Вдали от родного ядра. - В борьбе за
"трон". - Приятные хлопоты. - На международном рынке. - Смежные профессии.
- Куранты бьют вовремя. - Двадцать веков и одна секунда. - Подземные
кладовые. - На берегах Камы. - Кто покрасил соль? - В одесских лиманах. -
"Берегите мужчин!"
Сколько лет нашей планете? К сожалению, "метрическое свидетельство" о
рождении Земли не сохранилось, а сама же она (как и всякая не очень
молодая особа) тщательно скрывает свой возраст. Но коли есть загадка, то
всегда находятся и желающие ее разгадать. Спор о том, когда в просторах
Вселенной образовалась наша "обитель", длится уже много веков. Если верить
Библии, это произошло совсем недавно - около шести тысячелетий назад.
Согласно же современным научным представлениям, Земля "живет на свете" уже
приблизительно 4,5 миллиарда лет (весьма почтенный возраст, не правда ли?).
В роли свидетелей, готовых подтвердить правильность этой точки зрения,
выступают древнейшие горные породы планеты. До последнего времени самыми
"престарелыми" считались породы, найденные в Африке, в районе Трансвааля:
им примерно 3,4-3,5 миллиарда лет. Но в 1966 году молодой новозеландский
ученый Вик Макгрегор на западном побережье Гренландии, у входа в
Амералик-фьорд, обнаружил породы, которые оказались старше, чем
трансваальские, почти на добрых полмиллиарда лет. А установить это удалось
с помощью так называемых рубидий-стронциевых "часов". Что же они собой
представляют?
Еще в начале нашего века великий английский физик Эрнест Резерфорд
предложил для определения возраста минералов и горных пород
воспользоваться открытым за несколько лет до этого явлением
радиоактивности. Дело в том, что атомы радиоактивных химических элементов,
входящих в состав земной материи, постоянно излучают те или иные ядерные
частицы, превращаясь в атомы другого элемента. Самое любопытное, что
скорость такого превращения не зависит ни от температуры, ни от давления,
ни от каких-либо других факторов. Но зато каждый химический "индивидуум"
характеризуется своим периодом полураспада - временем, в течение которого
распадается ровно половина имеющегося количества радиоактивного элемента.
У одних веществ этот период длится лишь миллионные доли секунды, у других
достигает сотен триллионов лет.
Период полураспада одного из "долгожителей"-рубидия-87 (на его долю
приходится около 28% природных запасов рубидия) - 48 миллиардов лет.
Самопроизвольно испуская электроны, этот изотоп медленно, но верно
превращается в стабильный (не подвергающийся дальнейшему распаду) изотоп
стронция с тем же массовым числом (87). Поскольку известно обычное
соотношение между этим изотопом и его ближайшими "родственниками"
(изотопами с массовыми числами 88, 86, 84), нетрудно вычислить, сколько в
горной породе "сверхнормативного" стронция-87, т. е. того, который
образовался в результате радиоактивного распада рубидия-87. Ну, а
определив к тому же количество исходного "сырья", можно подсчитать, как
долго длился процесс превращения, т. е. узнать возраст горной породы.
Если гренландским горным породам с помощью изотопов рубидия и стронция
удалось доказать свою глубокую древность, то самые высокие горы нашей
планеты-Гималаи-благодаря этой же паре химических элементов смогли убедить
научный мир в том, что они значительно моложе, чем предполагалось до
последнего времени. Так, долгое время считалось, что горные массивы
Центральной Азии образовались сотни миллионов лет назад. Сравнительно
недавно японские ученые, воспользовавшись рубидий-стронциевыми "часами",
тщательно исследовали образцы гималайских пород и установили ошибочность
существовавшей точки зрения. Ученые пришли к выводу, что этот район
земного шара дважды подвергался сильнейшим геологическим сжатиям. Первое
сжатие, в результате которого сформировалась базовая структура (или, иначе
говоря, своего рода фундамент) Гималаев, произошло 450-500 миллионов лет
назад, а второе, благодаря которому на этом фундаменте были воздвигнуты
высочайшие горы Земли, - всего каких-нибудь 15 миллионов лет назад.
Существуют и другие подобные методы - радиоуглеродный, уран-гелиевый,
уран-свинцовый, калий-аргоновый и т. д., но для весьма солидных
промежутков времени, пожалуй, самыми подходящими являются
рубидий-стронциевые "часы".
Итак, рубидий помогает установить примерный возраст Земли. А как давно он
сам известен человеку? На этот вопрос можно дать предельно точный ответ.
Рождение рубидия состоялось в 1861 году. Это событие не ускользнуло от
пытливого взгляда двух замечательных немецких ученых - химика Роберта
Бунзена и физика Густава Кирхгофа, разработавших в 1859 году спектральный
метод анализа веществ, с помощью которого спустя год им удалось открыть
цезий. Продолжая исследовать различные минералы, они обнаружили в спектре
саксонского лепидолита две неизвестные ранее темно-красные линии. Так
сигнализировал о своем появлении на свет новый элемент, который и был
назван рубидием, что в переводе с латинского означает "красный". Это дает
рубидию основание считать себя почти однофамильцем рубина - известного
драгоценного камня. Но если рубин и впрямь красный, то о рубидии этого не
скажешь: как и большинство металлов, он серебристо-белого цвета. Рубидий
очень легкий (легче магния) и очень мягкий (как воск) металл. Ему явно
противопоказано пребывание в жарких местах нашей планеты: температура
плавления рубидия всего 38,9 ёС, поэтому под палящими лучами южного солнца
он может буквально растаять на глазах. Чтобы закончить словесный портрет
рубидия, укажем еще одну особую примету: пары его соединений придают
пламени горелки характерный пурпурный оттенок.
Впервые металлический рубидий сумел получить в 1863 году Р. Бунзен. Для
этого ему пришлось "свернуть горы", а вернее, выпарить целое "озеро" -
более 40 кубометров шварцвальдской минеральной воды, в которой также был
обнаружен новорожденный элемент. Но это было только начало. Из упаренного
раствора ученый осадил смесь хлороплатинатов калия, цезия и рубидия.
Теперь предстояло разделить неразлучную троицу. Воспользовавшись более
высокой растворимостью калийных соединений, Бунзен путем многократной
фрикционной кристаллизации сначала удалил "с поля" калий. Разделить цезий
и рубидий было еще сложнее, но и эту задачу удалось решить. Завершила дело
сажа, которая восстановила рубидий из его кислого тартрата (соли винной
кислоты).
Спустя четверть века известный русский химик Н. Н. Бекетов предложил
другой способ получения металлического рубидия - восстановлением его из
гидроокиси алюминиевым порошком. Ученый проводил этот процесс в железном
цилиндре с газоотводной трубкой, которая соединялась со стеклянным
резервуаром-холодильником. Цилиндр подогревался на газовой горелке, и в
нем начиналась бурная реакция, сопровождавшаяся выделением водорода и
возгонкой рубидия в холодильник. Как писал сам Бекетов, "рубидий гонится
постепенно, стекая, как ртуть, и сохраняя даже свой металлический блеск
вследствие того, что снаряд во время операции наполнен водородом". В наши
дни этот металл "добывают" главным образом из хлорида, воздействуя на него
металлическим кальцием в вакууме при 700-800ёС.
Как ни сложно выделить чистый рубидий из его соединений, но это только
полдела: не меньше хлопот связано с его хранением. "Свежий" металл
немедленно запаивают в ампулы из особого стекла, в которых создан вакуум
или находится инертный газ. Иногда "камерой предварительного заключения"
служат металлические сосуды, заполненные "сухим" (тщательно обезвоженным)
керосином или парафиновым маслом. Только при соблюдении этих условий можно
быть уверенным, что "продукт подлежит длительному хранению". Чем же
вызваны столь суровые меры "наказания"?
Виной всему-буйный характер пленника. Высвободить его из заточения-все
равно, что выпустить злого джина из бутылки. По химической активности
рубидий в семье металлов уступает только своему "старшему брату" цезию.
Оказавшись на воле, т. е. на воздухе, рубидий тут же воспламеняется и
сгорает ярким розовато-фиолетовым пламенем, образуя желтый
порошок-надперекись рубидия. Возникший "пожар" нельзя тушить водой: металл
реагирует с ней еще более бурно, со взрывом, причем разлученный с
кислородом водород немедленно загорается, "подливая масла в огонь". При
этом рубидий совершенно не считается с физическим состоянием воды: даже
замерзнув и превратившись в лед, она не перестает быть объектом нападок
агрессивного металла. Подобно тому как отбойный молоток шахтера врубается
в пласт угля, рубидий решительно "вгрызается" в толщу ледяных кристаллов,
и только адский мороз (ниже -108 (С) способен утихомирить буяна.
Получающаяся при этом гидроокись рубидия тоже старается показать характер:
если ее поместить в стеклянную посуду, то от стекла вскоре останутся одни
воспоминания. Да и сам рубидий при высоких температурах (300 ёС и выше)
быстро разрушает стекло, беззастенчиво "выпроваживая" кремний из его
окислов и силикатов. Вот почему "смирительные рубашки" (ампулы) для этого
металла необходимо делать из специального стекла, способного постоять за
себя.
Высокая химическая активность рубидия обусловлена строением его атома. Как
и у других щелочных металлов, на его внешней электронной оболочке
"проживает" один-единственный валентный электрон, который находится дальше
от ядра, чем у лития, натрия или калия, и поэтому по первому требованию
поступает в распоряжение атомов других веществ (с большей охотой отдают
свой электрон только атомы цезия).
Столь же легко рубидий расстается с электронами "по просьбе" световых
лучей. Это явление, называемое фотоэффектом, присуще многим металлам, но
рубидий и цезий в этом отношении вне всякой конкуренции. И хотя сегодня в
фотоэлементах и других фотоэлектрических устройствах гораздо чаще
применяется цезий, признанный "королем фотоэффекта", у рубидия есть
неплохие шансы со временем потеснить короля на троне: ведь его в природе
примерно в 50 раз больше, чем цезия, дефицит которого рано или поздно
сыграет на руку рубидию. К тому же некоторые его сплавы (например, с
теллуром) обладают максимальной светочувствительностью в более далекой
ультрафиолетовой области спектра, чем аналогичные цезиевые сплавы; в ряде
случаев это обстоятельство имеет первостепенное значение при выборе
материала фотокатодов.
Другая важная сфера деятельности рубидия - органическая химия, где на долю
его солей выпали "приятные хлопоты": они исполняют обязанности
катализаторов. В этом амплуа карбонат рубидия впервые выступил еще более
полувека назад при получении синтетической нефти. Сегодня без него не
обходится синтез метанола и высших спиртов, а также стирола и бутадиена -
исходных веществ для производства синтетического каучука. Сравнительно
недавно разработаны рубидиевые катализаторы для гидрогенизации,
дегидрогенизации, полимеризации и еще некоторых реакций органического
синтеза. Весьма важно, что такие катализаторы позволяют вести процесс при
более низких параметрах (температуре и давлении), чем в том случае, когда
для этой цели используются соединения натрия или калия. Кроме того, к их
достоинствам следует отнести пренебрежительное отношение к сере - бичу
многих других катализаторов.
Американские химики установили, что тартрат рубидия оказывает
катали