Электронная библиотека
Библиотека .орг.уа
Поиск по сайту
Детская литература
   Обучающая, развивающая литература, стихи, сказки
      Смаллиан Рэймонд. Алиса в стране смекалки -
Страницы: - 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -
а 20 кренделей больше, чем у Сони. Следовательно, 5 порций крендельков соответствует 20 кренделькам и 1 порцию составляют 4 кренделька. Таким образом, Соне досталось 4 кренделька, Мартовскому Зайцу - 8 крендельков и Болванщику - -- 24 кренделька, то есть на 20 крендельков больше, чем Соне. 27. Возмездие. После того как Мартовский Заяц съел 5/16 кренделей, на тарелке осталось 11/16. Соня съела 7/11 оставшихся кренделей, то есть 7/11 от 11/16. Так как 7/11*11/16=7/16, Соня съела 7/16 всех кренделей. Вместе с Мартовским Зайцем, съевшим 5/16 всех кренделей, они съели вдвоем 7/16+5/16= 12/16, то есть 12/16 всех кренделей. Болванщику они оставили 4/16, или 1/4, кренделей. Поскольку Болванщику досталось 8 кренделей, эти 8 кренделей составляют 1/4 всех кренделей. Следовательно, всего было 32 кренделя. От 32 кренделей 1/16 составляет 2 кренделя, а 5/16 - 10 кренделей. Следовательно, Мартовский Заяц съел 10 кренделей, после чего на тарелке осталось 22 кренделя. Затем Соня съела 7/11 от 22 оставшихся кренделей, что составляет 14 кренделей (так как 1/11 от 22 кренделей равна 2 кренделям, а 7/11 - 14 кренделям). На тарелке осталось 8 кренделей для Болванщика, так что все сходится. 28. Сколько фаворитов? Эта задача, обычно решаемая с помощью алгебры, очень проста, если подойти к ней следующим образом. Раздадим сначала по 3 кренделя каждому из 30 гостей Королевы. У нас останется 10 кренделей. При этом все нефавориты получат все крендели, которые им причитаются, а каждому из фаворитов еще предстоит получить по 1 кренделю. Следовательно, все оставшиеся крендели предназначаются фаворитам - по 1 кренделю каждому фавориту. Значит, фаворитов должно быть 10. Проверка. Каждый из 10 фаворитов должен получить по 4 кренделя, что составляет 40 кренделей на всех фаворитов. Каждый из остальных 20 гостей получит по 3 кренделя, что составляет еще 60 кренделей. 40+60=100. Следовательно, наше решение правильно. 29. Крендели и крендельки. Так как каждый крендель стоит столько, сколько один кренделек, то 7 кренделей стоят столько же, сколько 21 кренделек, а 7 кренделей и 4 кренделька - столько же, сколько 25 крендельков. С другой стороны, 4 кренделя и 7 крендельков стоят столько, сколько 19 крендельков (так как 4 кренделя стоят столько же, сколько 12 крендельков). Таким образом, разность в стоимости 25 и 19 крендельков составляет 12 центов. Значит, 6 крендельков (25-19=6) стоят 12 центов, 1 кренделек - 2 цента, а 1 крендель - 6 центов. Проверка. 4 кренделя и 7 крендельков стоят 24+14=38 центов, а 7 кренделей и 4 кренделька стоят 42+8=50 центов, то есть действительно на 12 центов дороже, чем в первом случае. 30. В гостях у Герцогини, кухарки и Чеширского Кота. Чеширский Кот должен обнаружить на подносе 2 кренделя: после того как он съест половину кренделей и еще 1 крендель, на подносе не останется ничего. Соня должна обнаружить на подносе 6 кренделей: после того как она съест половину кренделей и еще 1 крендель, на подносе останется 2 кренделя для Чеширского Кота. Мартовский Заяц увидел на подносе 14 кренделей: после того как он съел 7 кренделей и еще 1 крендель, на подносе осталось 6 кренделей. Болванщик увидел 30 кренделей: после того как он съел 15 кренделей и еще 1 крендель, на подносе осталось 14 кренделей. Таким образом, сначала на подносе было 30 кренделей. 31. Сколько дней работал садовник? Работая добросовестно, садовник может заработать самое большее 3*26=78 кренделей. Он заработал только 62 кренделя. Значит, 16 кренделей, он не получил из-за того, что отлынивал от работы. Каждый день, который садовник отлынивал от работы, он теряет 4 кренделя (разность между 3 кренделями, которые мог бы получить за добросовестную работу, и 1 кренделем, который взыскивается с него за безделье). Следовательно, садовник отлынивал от работы 4 дня и работал добросовестно 22 дня. Проверка. За 22 добросовестно отработанных дня садовник заработал 66 кренделей. За 4 дня, которые он отлынивал от работы, садовник вернул 4 кренделя. Таким образом, всего он получил 62 кренделя. 32. В котором часу? Неправильный ответ, который обычно приходится слышать: в 6 часов. Правильный ответ: в 5 часов. В 5 часов первый удар часов Королевы совпадает с первым ударом часов Короля. Второй удар часов Королевы приходится по времени на третий удар часов Короля. Третий удар часов Королевы совпадает с пятым ударом часов Короля. На этом бой часов Короля заканчивается, а часы Королевы еще должны пробить 2 раза. 33. Сколько человек заблудилось в горах? Назовем одной порцией количество припасов, которое один человек съедает за день. У 9 человек первоначально было 45 порций (запас провизии на 5 дней). На второй день у них осталось только 36 порций. На второй же день они повстречали вторую группу, и 36 оставшихся порций хватило всем на 3 дня. Следовательно, всего должно было быть 12 человек. Значит, во второй группе было 3 человека. 34. Сколько пролито воды? На пятый день, когда вода была пролита, ее оставалось на 8 дней. Пролитой воды хватило бы погибшему на 8 дней. Следовательно, пролито было 8 кварт воды. 35. Скоро ли на свободу? Когда тюремный надзиратель станет вдвое старше узника, разность их возрастов будет равна возрасту узника. Но разность возрастов не зависит от времени и по истечении срока заключения будет такой же, как сейчас, то есть равной 29 годам. Следовательно, в день выхода на свободу узнику исполнится 29 лет, а тюремному надзирателю, который вдвое старше, 58 лет. Таким образом, узнику осталось провести в темнице еще 4 года. 36. Долго ли выбраться из колодца? Те, кто думают, что лягушка выберется из колодца за 30 дней, ошибаются: лягушка могла бы выбраться из колодца к вечеру на 28-й день. Действительно, утром на 2-й день лягушка находится на высоте 1 фут над дном колодца, утром на 3-й день - на высоте 2 фута и т. д. Наконец, утром на 28-й день лягушка находится на высоте 27 футов над дном колодца. К вечеру того же дня она достигнет верха и вылезет из колодца, после чего ей уже не придется соскальзывать вниз. 37. Успеет ли велосипедист на поезд? Велосипедист рассуждал неверно: он усреднял расстояния, а не время. Если бы со скоростью 4 мили в час, 8 миль в час и 12 миль в час он двигался одно и то же время, то его средняя скорость действительно составила бы 8 миль в час, но большую часть времени он затратил на подъем в гору (со скоростью 4 мили в час), а меньшую - на спуск под гору (со скоростью 12 миль в час). Нетрудно подсчитать, сколько времени он пробыл в пути. Подъем в гору занял у него 1 ч, полчаса (или 30 мин) он затратил на передвижение по ровному участку дороги и треть часа (или 20 мин) на спуск под гору. Всего в пути он пробыл 1 ч 50 мин, опоздав к поезду на 20 мин. 38. Не опоздал ли пассажир на поезд? На первую станцию пассажир прибыл через минуту после того, как ушел поезд. Десять миль в час - это одна миля за 6 мин или полторы мили за 9 мин. Таким образом, на следующую станцию поезд прибыл через 8 мин после того, как пассажир прибыл на первую станцию. На следующей станции поезд стоял 14 1/2 мин, поэтому у пассажира было в запасе 22 1/2 мин, чтобы успеть сесть на поезд на следующей станции. Четыре мили в час - это 1 миля за 15 мин, или полторы мили за 22 1/2 мин. На следующую станцию пассажир прибудет как раз вовремя, чтобы успеть сесть на поезд. 39. Далеко ли до школы? Разница во времени между опозданием на 5 мин и приходом за 10 мин до начала урока составляет 15 мин. Следовательно, если мальчик будет идти в школу со скоростью 5 миль в час, то он сэкономит 15 мин (по сравнению с тем, сколько он затратил бы на дорогу, если бы шел со скоростью 4 мили в час). Пять миль в час - это одна миля за 12 мин, а 4 мили в час - это 1 миля за 15 мин. Следовательно, идя быстрее, мальчик экономит по 3 мин на каждой миле, а 15 мин - на расстоянии 5 миль. Значит, школа находится в 5 милях от дома. Проверка. Идя со скоростью 5 миль в час, мальчик затрачивает на дорогу один час, а идя со скоростью 4 мили в час, - час с четвертью (за час он проходит первые 4 мили, а за четверть часа - последнюю милю), то есть 1 ч 15 мин. Разница по времени действительно составляет 15 мин. 40. Разве не печально? История действительно немного печальная, так как при подсчете барышей и убытков торговец произведениями искусства просчитался: в тот день он не только ничего не заработал, но и потерпел убыток в 20 долларов. Попробуем разобраться, почему так получилось. Первую картину он продал с 10%-ной прибылью. От продажи ее он выручил 990 долларов. За сколько он купил ее? Так как прибыль составляет 10% не от 990 долларов, а от первоначальной стоимости картины, то 990 долларов - это 110% от первоначальной стоимости картины, или 11/10). Следовательно, за картину торговец заплатил 10/11 от 990, то есть 990 долларов. [Проверка. За картину торговец заплатил 900 долларов, 10% от 900 составляют 90 долларов, поэтому от продажи картины он выручил 990 долларов, получив при этом прибыль 90 долларов.] А как обстоит дело со второй картиной? От продажи ее торговец потерял 10% от ее первоначальной стоимости, поэтому вторую картину он продал за 90%, или 9/10, от ее первоначальной стоимости. Следовательно, при покупке второй картины торговец заплатил за нее 10/9 от 990 долларов, то есть 1100 долларов. [Проверка. За вторую картину торговец заплатил 1100 долларов, 10% от 1100 составляют 110 долларов, поэтому он продал ее за 1100-110=990 долларов.] Таким образом, от продажи второй картины он потерпел убыток в 110 долларов, а от продажи первой картины получил прибыль всего 90 долларов. Следовательно, в тот день он потерял всего 20 долларов. 41. Кто старше? Прежде всего вычислим, через сколько дней часы Болванщика и Мартовского Зайца покажут одно и то же время. Так как часы Мартовского Зайца отстают с такой же скоростью, с какой спешат часы Болванщика, то в следующий раз они покажут одно и то же время, когда часы Болванщика уйдут вперед на 6 ч, а часы Мартовского Зайца отстанут на 6 ч. (На тех и других часах будет 6 ч, причем и те и другие часы будут показывать неверное время.) За сколько дней часы Болванщика уйдут вперед на 6 ч. За час они уходят вперед на 10 с, за 6 ч - на 1 мин, за сутки - на 4 мин, за 15 суток - на 1 ч, за 90 суток (дней на календаре) - на 6 ч. Таким образом, через 90 дней на часах Болванщика и Мартовского Зайца стрелки снова будут показывать одно и то же время. Нам неизвестно, в какой из дней января Болванщик и Мартовский Заяц поставили на своих часах точное время. Но если бы это произошло в любой из дней, кроме 1 января, то день, когда часы Болванщика и Мартовского Зайца в следующей раз покажут одно и то же время (а это событие, как мы установили, произойдет через 90 дней), пришелся бы не на март, а на апрель (или даже на май). Следовательно, Болванщик и Мартовский Заяц могли сверить свои часы только 1 января. Но даже в этом случае их часы покажут в следующий раз одно и то же время в марте только при условии, если год високосный! (В этом читатель без труда убедится с помощью календаря: через 90 дней после 1 января в обычный год наступает 1 апреля, а в високосный год - 31 марта!) Тем самым доказано, что 21 день рождения Мартовского Зайца приходится на високосный год. Следовательно, Мартовский Заяц мог родиться в 1843, а не в 1842 году или 1844 году. (Через 21 год после 1843 года наступает високосный 1864 год.) По условиям задачи только один из двух (либо Мартовский Заяц, либо Болванщик) родился в 1842 году. Следовательно, в 1842 году родился Болванщик. Значит, Болванщик старше Мартовского Зайца. Глава 5 42. Появление первого шпиона. C заведомо не может быть рыцарем, так как ни один рыцарь не стал бы лгать и утверждать, будто он шпион. Следовательно, C либо лжец, либо шпион. Предположим, что C шпион. Тогда показание A ложно, значит, A шпион (A не может быть шпионом, так как шпион C) и рыцарем может быть только B. Но если B рыцарь, то как он мог дать ложные показания, утверждая, будто A рыцарь? Следовательно, предположение о том, что C шпион, приводит к противоречию. Значит, C лжец. Тогда показание B ложно, поэтому B либо лжец, либо шпион. Но так как лжец B, то шпионом должен быть A. Следовательно, A может быть только рыцарем. Итак, A рыцарь, B шпион и C лжец. 43. Глупый шпион. Ложное заявление, изобличающее шпиона, могло быть, например, таким: "Я лжец". Рыцарь никогда не лжет и поэтому не станет утверждать о себе, будто он лжец. С другой стороны, лжец никогда не говорит правды и не станет признаваться, что он лжец. Только шпион может сделать ложное признание, будто он лжец. 44. Еще один глупый шпион. Истинное заявление, изобличающее шпиона, могло быть, например, таким: "Я не рыцарь". Действительно, ни рыцарь, ни лжец не могли бы сказать о себе такое. Рыцарь никогда не лжет и не станет утверждать, будто он не рыцарь. Лжец всегда лжет и не станет признаваться, что он не рыцарь. Значит, такое заявление мог бы сделать только шпион. 45. Хитрый шпион. Если бы A ответил на вопрос судьи "да", то тем самым он изобличил себя как шпиона, так как судья (вместе с присяжными) мог бы рассуждать следующим образом: "Предположим, что B шпион. Тогда все трое обвиняемых дали бы правдивые показания, что невозможно, так как один из них лжец. Следовательно, B не может быть шпионом. Значит, его показание ложно, поэтому B лжец. Показание C также ложно, а поскольку C не лжец (ибо лжец B), то он шпион". Таким образом, если бы на вопрос судьи C ответил "да", то он был бы изобличен как шпион. Зная это, C благоразумно ответил "нет", лишив тем самым суд возможности установить, шпион он или коренной житель. (Суду удалось лишь установить, что либо C рыцарь, а B шпион, либо C лжец, а A шпион, либо C шпион.) 46. Кто Мердок? Так как A утверждает, что он шпион, то A либо лжец, либо шпион. Аналогичным образом, так как C утверждает, что он шпион, C либо лжец, либо шпион. Следовательно, из двух подсудимых A и C один лжец, а другой шпион. Значит, B рыцарь и дал на суде правдивые показания: A шпион. 47. Возвращение Мердока. Если A Мердок, то все три показания истинны, что невозможно, так как один из троих подсудимых лжец. Если C Мердок, то все три показания ложны, что также невозможно, так как один из троих подсудимых рыцарь. Следовательно, Мердоком должен быть B. 48. Более интересный случай. Задачу невозможно было бы решить, если бы в условиях не было ссылки на то, что суд изобличил шпиона, после того как на него указал C: ведь мы знаем, что суд смог установить, кто из троих шпион, и это весьма важная "зацепка"! Предположим, что C обвинил A в том, что тот шпион. Располагая этими данными, судья не мог бы решить, кто шпион, поскольку они позволяют лишь утверждать, что либо A шпион, B лжец и C рыцарь либо B шпион, A рыцарь и C лжец, либо C шпион, A лжец и B рыцарь. Таким образом, если C указал на A как на шпиона, то судья не мог бы изобличить настоящего шпиона. Посмотрим теперь, что произошло бы, если бы C указал на B. Тогда B обвиняли бы в том, что он шпион, двое: A и C. Выдвинутые A и C обвинения либо оба истинны, либо оба ложны. Если бы они были оба истинны, то B действительно был бы шпионом, а так как A и C оба сказали правду, они оба должны были бы быть рыцарями ("вакансия" шпиона занята B). Но по условиям задачи среди подсудимых A, B и C не может быть двух рыцарей. Следовательно, предъявленные B обвинения в шпионаже ложны. Значит, B не шпион. Мог бы A быть шпионом? Нет, так как если бы A был шпионом, то взаимные обвинения B и C в шпионаже были бы ложны. Следовательно, B и C были бы (оба) лжецами (что противоречит условиям задачи.) Остается единственно возможный случай: шпион C (B, обвинивший C в шпионаже, рыцарь, а A, обвинивший B, лжец). Итак, если C указал на A как на шпиона, то судья не смог бы установить, кто из троих в действительности шпион. Но если C указал на B, то судья смог бы решить что шпион C. А так как судья знал, на кого показал A, то C должен был указать на B, и судья на основании полученных данных изобличил C в шпионаже. 49. Еще более интересный случай. Мы не знаем, что ответили A и B, поэтому нам необходимо рассмотреть четыре возможных случая: 1) A и B оба сказали "да": 2) A сказал "нет", B сказал "да"; 3) A сказал "да", B сказал "нет"; 4) A и B оба сказали "нет". Все эти четыре случая встретятся нам и в следующих двух задачах, поэтому мы тщательно проанализируем их сейчас. Случай 1: A и B оба сказали "да". Так как A утверждает, что он шпион, то A либо лжец, либо шпион (рыцарь не станет называть себя шпионом). Если A лжец, то он солгал и в том случае, когда утверждал., что занимается шпионажем. Следовательно, B солгал, утверждая, что A сказал правду. Значит, B не рыцарь, а поскольку A лжец, то B шпион, и, наконец, C должен быть рыцарем. Таким образом, если A лжец, то B шпион, а C рыцарь. Предположим теперь, что A шпион. Тогда он сказал правду, поэтому B, утверждая, что A сказал правду, не погрешил против истины. Следовательно, B должен быть рыцарем. Но тогда C может быть только рыцарем. Таким образом, если A лжец, то B шпион, а C рыцарь. Запишем оба возможных варианта (1а и 1б) случая 1 в следующем виде: A B C 1а Рыцарь Шпион Рыцарь 1б Шпион Рыцарь Лжец Случай 2: A сказал "нет", B сказал "да". Так как A отрицает, что он шпион, то A либо рыцарь, либо шпион (лжец солгал бы и сказал бы о себе, что он шпион). Если A рыцарь, то он сказал правду. Значит, B также сказал правду, когда заявил, что A сказал правду, поэтому B не может быть лжецом. Следовательно, B должен быть шпионом. Но тогда C может быть только лжецом. Если A шпион, то он солгал. Следовательно, B также солгал, когда утверждал, что A сказал правду. Значит, B лжец, и тогда C может быть только рыцарем. Оба возможных варианта случая 2 (2а и 2б) запишем в следующем виде: A B C 2а Рыцарь Шпион Лжец 2б Шпион Лжец Рыцарь Случай 3: A сказал "да", B сказал "нет". Так как A утверждает о себе, что он шпион, то (как и в случае 1) A должен быть лжецом или шпионом. Если A лжец, то он солгал, но тогда B сказал правду. Значит, либо B рыцарь (и C шпион), либо B шпион (и C рыцарь). Если A шпион, то он сказал правду, но тогда B солгал. Значит, B лжец и C рыцарь. Таким образом, в случае 3 возможны три варианта: A B C 3а Лжец Рыцарь Шпион 3б Лжец Шпион Рыцарь 3в Шпион Лжец Рыцарь Случай 4: A и B оба сказали "нет". Так как A отрицает, что он шпион, то (как в случае 2) A либо рыцарь, либо шпион. Предположим, что A рыцарь. Тогда A сказал правду, а B солгал. Следовательно, B лжец (а C шпион) или B шпион (а C лжец). Предположим, что A шпион. Тогда он сказал правду. Значит, B также сказал правду, поэтому B рыцарь (а C лжец). Таким образом, в случае 4 возможны три варианта (как и в случае 3): A B C 4а Рыцарь Лжец Шпион 4б Рыцарь Шпион Лжец 4в Шпион Рыцарь Лжец Для удобства сведем все четыре случая в одну таблицу. Случай 1: A и B оба сказали "да" A B C 1а Лжец Шпион Рыцарь 1б Шпион Рыцарь Лжец Случай 2: A сказал "нет", B сказал "да" A B C 2а Рыцарь Шпион Лжец 2б Шпион Лжец Рыцарь Случай 3: A сказал "да", B сказал "нет" A B C 3а Лжец Рыцарь Шпион 3б Лжец Шпион Рыцарь 3в Шпион Лжец Рыцарь Случай 4: A и B оба сказали "нет" A B C 4а Рыцарь Лжец Шпион 4б Рыцарь Шпион Лжец 4в Шпион Рыцарь Лжец Обратимся снова к условиям задачи. После того как A и B ответили на вопросы судьи, тот сумел установить, что C не шпион. В случае 3 судья не мог бы установить, шпион ли C или рыцарь. В случае 4 судья не смог бы установить, шпион ли C или лжец. Но судья со всей определенностью заявил, что C не шпион. Значит, случаи 3 и 4 отпадают и остается либо случай 1, либ

Страницы: 1  - 2  - 3  - 4  - 5  - 6  - 7  - 8  - 9  - 10  - 11  - 12  - 13  - 14  - 15  - 16  -


Все книги на данном сайте, являются собственностью его уважаемых авторов и предназначены исключительно для ознакомительных целей. Просматривая или скачивая книгу, Вы обязуетесь в течении суток удалить ее. Если вы желаете чтоб произведение было удалено пишите админитратору